删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Heisenberg群上的分数次Hardy算子在混合范空间上的最佳界

本站小编 Free考研考试/2021-12-27

Heisenberg群上的分数次Hardy算子在混合范空间上的最佳界 王泽群1, 魏明权2, 张兴松3, 燕敦验41. 东北财经大学数据科学与人工智能学院 大连 116025;
2. 信阳师范学院数学与统计学院 信阳 464000;
3. 中国人民大学附属中学朝阳学校 北京 100028;
4. 中国科学院大学数学科学学院 北京 100049 Sharp Constants on Mixed Norm Spaces for Fractional Hardy Operators on Heisenberg Group Ze Qun WANG1, Ming Quan WEI2, Xing Song ZHANG3, Dun Yan YAN41. School of Data Science and Artificial Intelligence, Dongbei University of Finance and Economics, Dalian 116025, P. R. China;
2. School of Mathematics and Statistics, Xinyang Normal University, Xinyang 464000, P. R. China;
3. RDFZ Chaoyang School, Beijing 100028, P. R. China;
4. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(496 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究Heisenberg群上的分数次Hardy算子的最佳界.我们首先给出Heisenberg群上的分数次Hardy算子的Lp(Hn)→Lq(Hn)和L1(Hn)→Lq,∞(Hn)最佳界.在此基础上,进一步求出一类Heisenberg群上的乘积型分数次Hardy算子在混合范空间上的最佳界.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-04-20
MR (2010):O174.2
基金资助:国家自然科学基金资助项目(11471309,11561062);河南省自然科学基金(202300410338);信阳师范学院(南湖****奖励计划)青年项目;河南省高等学校重点科研项目(18A110028)
通讯作者:魏明权,E-mail:weimingquan11@mails.ucas.ac.cnE-mail: weimingquan11@mails.ucas.ac.cn
作者简介: 王泽群,E-mail:wangzequn17@mails.ucas.ac.cn;张兴松,E-mail:zhangxingsong17@mails.ucas.ac.cn;燕敦验,E-mail:ydunyan@ucas.ac.cn
引用本文:
王泽群, 魏明权, 张兴松, 燕敦验. Heisenberg群上的分数次Hardy算子在混合范空间上的最佳界[J]. 数学学报, 2021, 64(5): 811-820. Ze Qun WANG, Ming Quan WEI, Xing Song ZHANG, Dun Yan YAN. Sharp Constants on Mixed Norm Spaces for Fractional Hardy Operators on Heisenberg Group. Acta Mathematica Sinica, Chinese Series, 2021, 64(5): 811-820.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I5/811


[1] Benedek A., Calderón P., Panzone R., Convolution operators on Banach space valued functions, P. Natl. Acad. Sci. USA, 1962, 48(3):356-365.
[2] Benedek A., Panzone R., The space Lp with mixed norm, Duke Math. J., 1961, 28(3):301-324.
[3] Bliss G. A., An Integral Inequality, London Math., 1930, S1-5(1):40-46.
[4] Christ M., Grafakos L., Best constants for two nonconvolution inequalities, Proc. Amer. Math. Soc., 1995, 123(6):1687-1693.
[5] Fu Z. W., Grafakos L., Lu S. Z., et al., Sharp bounds for m-linear Hardy and Hilbert operators, Houston J. Math., 2012, 38(1):225-244.
[6] Gao G. L., Hu K. M., Zhang C. J., Sharp weak estimates for Hardy-type opertors, Ann. Func. Anal., 2016, 7(3):421-433.
[7] Hardy G. H., Notes on some points in the integral calculus, Messenger of Math., 1928, 57:12-16.
[8] Hardy G. H., Littlewood J. E., Polya G., Inequalities, Cambridge University Press, New York, 1934.
[9] He Q. J., Li X., Yan D. Y., Sharp bounds for Hardy type operators on higher-dimensional product spaces, Front. Math. China, 2018, 13(6):1341-1353.
[10] Li X., Wei M. Q., Yan D. Y., Sharp bounds for fractional Hardy operator on higher-dimensional product spaces, J. Univ. Chinese Acad. Sci., 2020, 37(1):1-5.
[11] Lu S. Z., Yan D. Y., Zhao F. Y., Sharp bounds for Hardy type operators on higher-dimensional product spaces, J. Inequal. Appl., 2013, 2013(1):1-11.
[12] Lu S. Z., Zhao F. Y., The best bound for n-dimensional fractional Hardy operators, Math. Inequal. Appl., 2015, 18(1):233-240.
[13] Persson L. E., Samko S. G., A note on the best constants in some Hardy inequalities, J. Math. Ineq., 2015, 9(2):437-447.
[14] Wei M. Q., Yan D. Y., Sharp bounds for Hardy operators on product spaces, Acta Math. Sci. Ser. B (Engl. Ed.), 2018, 38(2):441-449.
[15] Wu Q. Y., Fu Z. W., Sharp estimates for Hardy operators on Heisenberg group, Front. Math. China, 2016, 11(1):155-172.

[1]江寅生. 海森堡群上薛定谔算子的黎斯位势的某些性质[J]. Acta Mathematica Sinica, English Series, 2010, 53(4): 785-794.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23823
相关话题/分数 空间 数学 北京 信阳师范学院