删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

上三角闭算子矩阵的本质谱和Weyl谱性质

本站小编 Free考研考试/2021-12-27

上三角闭算子矩阵的本质谱和Weyl谱性质 青梅, 黄俊杰, 阿拉坦仓1. 呼和浩特民族学院数学与大数据学院 呼和浩特 010051;
2. 内蒙古大学数学科学学院 呼和浩特 010021;
3. 内蒙古师范大学数学科学学院 呼和浩特 010022 The Essential and Weyl Spectral Properties of Closed Upper Triangular Operator Matrices Mei QING, Jun Jie HUANG, Alatancang1. School of Mathematics and Big Data, Hohhot Minzu college, Hohhot 010051, P. R. China;
2. School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, P. R. China;
3. School of Mathematical Sciences, Inner Mongolia Normal University, Hohhot 010022, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(422 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文主要研究了上三角闭算子矩阵TB=(A0BD):DA)⊕DD)⊂HKHK的本质谱和Weyl谱的性质,其中HK都是无穷维复可分的Hilbert空间.首先,对给定的稠定闭算子AD,得到了存在可闭算子B使得TB是半Weyl和半Fredholm算子的充分必要条件,其中B满足DB)⊃DD).进一步,刻画了TB的固有本质谱和Weyl谱集合.最后,给出了等式σ*TB)=σ*A)∪σ*D)成立的充分必要条件,其中σ*TB)包含TB的本质谱和Weyl谱.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-05-27
MR (2010):O177.1
O177.7
基金资助:国家自然科学基金(11961022,11761029,11961052);内蒙古自然科学基金(2018BS01005);呼和浩特民族学院博士基金(HMBS1901);呼和浩特民族学院科研创新团队建设计划内蒙古自治区本级引进高层次人才项目
通讯作者:阿拉坦仓,E-mail:alatanca@imu.edu.cnE-mail: alatanca@imu.edu.cn
作者简介: 青梅,E-mail:bai.qingmei@163.com;黄俊杰,E-mail:huangjunjie@imu.edu.cn
引用本文:
青梅, 黄俊杰, 阿拉坦仓. 上三角闭算子矩阵的本质谱和Weyl谱性质[J]. 数学学报, 2021, 64(5): 761-772. Mei QING, Jun Jie HUANG, Alatancang. The Essential and Weyl Spectral Properties of Closed Upper Triangular Operator Matrices. Acta Mathematica Sinica, Chinese Series, 2021, 64(5): 761-772.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I5/761


[1] Bai Q., Huang J., Chen A., Essential, Weyl and Browder spectra of unbounded upper triangular operator matrices, Linear and Multilinear Algebra, 2016, 64:1583-1594.
[2] Bai Q., Huang J., Chen A., The property of essential, Weyl and Browder spectrum of upper triangular operator matrices, Filomat, Accepted.
[3] Bai Q., Huang J., Chen A., Weyl type theorems of 2×2 upper triangular operator matrices, J. Math. Anal. Appl., 2016, 434:1065-1076.
[4] Ben-Israel A., Greville T. N. E., Generalized Inverse:Theory and Applications, Second Edition, Springer, New York, 2003.
[5] Cao X. H., Guo M. Z., Meng B., Semi-Fredholm spectrum and Weyl's theory for operator matrices, Acta Math. Sinica, Engl. Ser., 2006, 22:167-178.
[6] Cao X. H., Meng B., Essential approximate point spectra and Weyl's theorem for upper triangular operator matrices, J. Math. Anal. Appl., 2005, 304:759-771.
[7] Cvetkovi?-Ili? D. S., Completions of upper-triangular matrices to left-Fredholm operators with non-positive index, J. Oper. Theory, 2016, 76:101-114.
[8] Djordjevi? D. S., Perturbations of spectra of operator matrices, J. Oper. Theory, 2002, 48:467-486.
[9] Du H., Pan J., Perturbation of spectrum of 2×2 operator matrices, Proc. Amer. Math. Soc., 1994, 121:761-766.
[10] Gohberg I., Goldberg S., Kaashoek M. A., Classes of Linear Operators, Vol. 1, Birkhäuser-Verlag, Basel, 1990.
[11] Hai G. J., Chen A., On the right (left) invertible completions for operator matrices, Integr. Equ. Oper. Theory, 2010, 67:79-93.
[12] Han J. K., Lee H. Y., Lee W. Y., Invertible completions of 2×2 upper triangular operator matrices, Proc. Amer. Math. Soc., 1999, 128:119-123.
[13] Li Y., Du H., The intersection of essential approximate point spectra of operator matrices, J. Math. Anal. Appl., 2006, 323:1171-1183.
[14] Li Y., Sun X., Du H., The intersection of left and right essential spectra of 2×2 upper triangular operator matrices, Bull. Lond. Math. Soc., 2004, 36:811-819.
[15] Schechter M., Principles of Functional Analysis (Second Edition), American Mathematical Society, Providence, Rhode Island, 2001.
[16] Zhang S., Wu Z., Characterizations of perturbations of spectra of 2×2 upper triangular operator matrices, J. Math. Anal. Appl., 2012, 392:103-110.

[1]吴秀峰, 黄俊杰. 3×3阶上三角算子矩阵的点谱、剩余谱和连续谱[J]. 数学学报, 2019, 62(6): 817-832.
[2]沈丛丛, 蒋立宁, 王利广. 冯·诺依曼代数的可测算子的性质[J]. 数学学报, 2019, 62(2): 293-302.
[3]张丽丽, 任志茹. M-矩阵线性互补问题模系多分裂迭代方法的收敛性[J]. 数学学报, 2017, 60(4): 547-556.
[4]邱仁军. 闭值域稠定闭算子的Moore-Penrose广义逆的有限维逼近[J]. 数学学报, 2016, 59(6): 835-846.
[5]陈月姣, 张明望. 基于核函数求解 LCPs的全-Newton步不可行内点算法[J]. Acta Mathematica Sinica, English Series, 2014, 57(6): 1047-1060.
[6]海国君, 阿拉坦仓. 上三角算子矩阵的(αβ)-本质谱[J]. Acta Mathematica Sinica, English Series, 2014, 57(3): 569-580.
[7]戴磊, 曹小红, 肖娜娜. 广义Kato分解与Weyl型定理的摄动[J]. Acta Mathematica Sinica, English Series, 2013, 56(4): 469-478.
[8]张世芳, 钟怀杰, 武俊德. 2 × 2-上三角算子矩阵谱的Fredholm扰动[J]. Acta Mathematica Sinica, English Series, 2011, 54(4): 581-590.
[9]张世芳, 钟怀杰, 武俊德. 上三角算子矩阵的谱[J]. Acta Mathematica Sinica, English Series, 2011, 54(1): 41-60.
[10]于涛;. 加权Bergman空间上Toeplitz算子的本质谱[J]. Acta Mathematica Sinica, English Series, 2006, 49(2): 357-362.
[11]王培合;沈纯理. 带有极点的黎曼流形上Laplacian的本质谱[J]. Acta Mathematica Sinica, English Series, 2005, 48(5): 985-992.
[12]苏维钢. 拟相似算子的右本质谱的连通分支[J]. Acta Mathematica Sinica, English Series, 2005, 48(5): 993-998.
[13]李愿;孙秀红;杜鸿科. 2×2上三角算子矩阵的左(右)Weyl谱的交[J]. Acta Mathematica Sinica, English Series, 2005, 48(4): 653-660.
[14]方亚平;黄南京. 伪单调型向量F-互补问题可行集的最小元问题[J]. Acta Mathematica Sinica, English Series, 2005, 48(3): 499-508.
[15]郭占宽;孙炯. 具有负指数系数的微分算子的谱[J]. Acta Mathematica Sinica, English Series, 2003, 46(4): 639-648.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23819
相关话题/数学 空间 科学学院 算子 内蒙古大学