删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Bergman—Hartogs域上的Roper—Suffridge延拓算子

本站小编 Free考研考试/2021-12-27

Bergman—Hartogs域上的Roper—Suffridge延拓算子 崔艳艳1, 王朝君1, 刘浩21. 周口师范学院数学与统计学院 周口 466001;
2. 河南大学现代数学研究所 开封 475001 The Generalized Roper-Suffridge Operators on Bergman-Hartogs Domains Yan Yan CUI1, Chao Jun WANG1, Hao LIU21. College of Mathematics and Statistics, Zhoukou Normal University, Zhoukou 466001, P. R. China;
2. Institute of Contemporary Mathematics, Henan University, Kaifeng 475001, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(378 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文给出多复变数空间中构造具有特殊几何性质的双全纯映照的新方法,讨论了Bergman—Hartogs域上推广的Roper—Suffridge算子的性质,并利用Bergman—Hartogs域的特征及双全纯映照子族的几何性质,证明推广的Roper—Suffridge算子在Bergman—Hartogs域上及在不同的条件下保持强α次殆β型螺形映照、复数λ阶殆星形映照及SΩ*βAB)的几何性质.由此得到简化后的算子具有同样的性质.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2016-10-31
MR (2010):O174.56
基金资助:国家自然科学基金(11271359,11471098);河南省教育厅科学技术研究重点项目(17A110041,19B110016);周口师范学院科研创新基金项目(ZKNUA201805)
通讯作者:刘浩,E-mail:haoliu@henu.edu.cnE-mail: haoliu@henu.edu.cn
作者简介: 崔艳艳,E-mail:cui9907081@163.com;王朝君,E-mail:wang9907081@163.com
引用本文:
崔艳艳, 王朝君, 刘浩. Bergman—Hartogs域上的Roper—Suffridge延拓算子[J]. 数学学报, 2021, 64(5): 787-800. Yan Yan CUI, Chao Jun WANG, Hao LIU. The Generalized Roper-Suffridge Operators on Bergman-Hartogs Domains. Acta Mathematica Sinica, Chinese Series, 2021, 64(5): 787-800.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I5/787


[1] Cai R. H., Liu X. S., The third and fourth coefficient estimations for the subclasses of strongly spirallike functions (in Chinese), Journal of Zhanjiang Normal College, 2010, 31:38-43.
[2] Chuaqui M., Applications of subordination chains to starlike mappings in Cn, Pacif. J. Math., 1995, 168:33-48.
[3] Duren P. L., Univalent Functions, Springer-Verlag, New York, 1983.
[4] Feng S. X., Some classes of holomorphic mappings in several complex variables (in Chinese), University of Science and Technology of China Doctoral Thesis, Hefei, 2004.
[5] Feng S. X., Liu T. S., Ren G. B., The growth and covering theorems for several mappings on the unit ball in complex Banach spaces (in Chinese), Chin. Ann. Math., 2007, 28A(2):215-230.
[6] Gao C. L., The generalized Roper-Suffridge extension operator on a Reinhardt domain (in Chinese), Zhejiang Normal University Master Thesis, Jinhua, 2012.
[7] Gong S., Liu T. S., The generalized Roper-Suffridge extension operator, J. Math. Anal. Appl., 2003, 284:425-434.
[8] Graham I., Hamada H., Kohr G., Suffridge T. J., Extension operators for locally univalent mappings, Michigan Math. J., 2002, 50:37-55.
[9] Graham I., Kohr G., Geometric Function Theory in One and Higher Dimensions, Marcel Dekker, New York, 2003.
[10] Graham I., Kohr G., Univalent mappings associated with the Roper-Suffridge extension operator, J. Analyse Math., 2000, 81:331-342.
[11] Graham I., Kohr G., Kohr M., Loewner chains and Roper-Suffridge extension operator, J. Math. Anal. Appl., 2000, 247:448-465.
[12] Gurganus K. R., φ-like holomorphic functions in Cn and Banach spaces, Trans. Amer. Math. Soc., 1975, 205:389-406.
[13] Koebe P., Über die Uniformisierung beliebiger analylischer kurven. Nachr Akad Wiss Göttingen, Math. Phys. Kl., 1907, 1907:191-210.
[14] Kohr G., Loewner chains and a modification of the Roper-Suffridge extension operator, Mathematica, 2006, 71(1):41-48.
[15] Liu T. S., Ren G. B., Growth theorem of convex mappings on bounded convex circular domains, Science in China, 1998, 41(2):123-130.
[16] Liu T. S., Xu Q. H., Loewner chains associated with the generalized Roper-Suffridge extension operator, J. Math. Anal. Appl., 2006, 322:107-120.
[17] Liu X. S., The properties of some biholomorphic mappings in geometric function theory of several complex variables (in Chinese), University of Science and Technology of China Doctoral Thesis, Hefei, 2006.
[18] Liu X. S., Feng S. X., A remark on the generalized Roper-Suffridge extension operator for spirallike mappings of type β and order α (in Chinese), Chin. Quart. J. of Math., 2009, 24(2):310-316.
[19] Muir J. R., A class of Loewner chain preserving extension operators, J. Math. Anal. Appl., 2008, 337(2):862-879.
[20] Muir J. R., A modification of the Roper-Suffridge extension operator, Comput. Methods Funct. Theory, 2005, 5(1):237-251.
[21] Roper K. A., Suffridge T. J., Convex mappings on the unit ball of Cn, J. Anal. Math., 1995, 65:333-347.
[22] Russo R., On the maximum modulus theorem for the steady-state Navier-Stokes equations in Lipschitz bounded domains, Applicable Analysis, 2011, 90(1):193-200.
[23] Tang Y. Y., Roper-Suffridge operators on Bergman-Hartogs domain (in Chinese), Henan University Master Thesis, Kaifeng, 2016.
[24] Wang J. F., On the growth theorem and the Roper-Suffridge extension operator for a class of starlike mappings in Cn (in Chinese), Chin. Ann. Math., 2013, 34A(2):223-234.
[25] Wang J. F., Liu T. S., A modification of the Roper-Suffridge extension operator for some holomorphic mappings (in Chinese), Chin. Ann. Math., 2010, 31A(4):487-496.
[26] Xu Q. H., The properties and relations of subclasses of biholomorphic mappings in several complex variables (in Chinese), University of Science and Technology of China Doctoral Thesis, Hefei, 2006.
[27] Zhao Y. H., Almost starlike mappings of complex order λ on the unit ball of a complex Banach space (in Chinese), Zhejiang Normal University Master Thesis, Jinhua, 2013.
[28] Zhu Y. C., Liu M. S., The generalized Roper-Suffridge extension operator in Banach spaces (I) (in Chinese), Acta Mathematica Sinica, 2007, 50(1):189-196.
[29] Zhu Y. C., Liu M. S., The generalized Roper-Suffridge extension operator on Reinhardt domain Dp, Taiwanese Jour. of Math., 2010, 14(2):359-372.

[1]王朝君, 崔艳艳, 刘浩. Bn上推广的Roper-Suffridge算子的性质[J]. 数学学报, 2016, 59(6): 729-744.
[2]徐庆华, 刘太顺. 用统一的方法处理双全纯映照子族齐次展开式的估计[J]. Acta Mathematica Sinica, English Series, 2009, 52(6): 1189-1198.
[3]刘小松;刘太顺;. 两类正规化双全纯映照子族齐次展开式的精细估计[J]. Acta Mathematica Sinica, English Series, 2007, 50(2): 393-400.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23821
相关话题/数学 空间 研究所 科研 河南大学