删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

完备随机赋范模上的连续模同态半群

本站小编 Free考研考试/2021-12-27

完备随机赋范模上的连续模同态半群 张霞, 刘明天津工业大学数学科学学院 天津 300387 On Semigroups of Continuous Module Homomorphisms on Complete Random Normed Modules Xia ZHANG, Ming LIUSchool of Mathematical Sciences, Tiangong University, Tianjin 300387, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(531 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文首先利用完备随机赋范模的层次结构研究了一致连续模同态半群与其无穷小生成元之间的关系,并进一步给出几乎处处有界半群的指数刻画.在此基础上,建立几乎处处有界半群的微分和积分公式,推广了经典的结论.同时,用反例说明要求上述半群几乎处处有界的条件是必要的.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-06-12
MR (2010):O177.2
基金资助:国家自然科学基金资助项目(11301380);教育部人文社科基金资助项目(20YJC790174);天津市自然科学基金资助项目(18JCYBJC18900)
通讯作者:刘明,E-mail:liuming@tiangong.edu.cnE-mail: liuming@tiangong.edu.cn
作者简介: 张霞,E-mail:zhangxia@tiangong.edu.cn
引用本文:
张霞, 刘明. 完备随机赋范模上的连续模同态半群[J]. 数学学报, 2021, 64(5): 773-786. Xia ZHANG, Ming LIU. On Semigroups of Continuous Module Homomorphisms on Complete Random Normed Modules. Acta Mathematica Sinica, Chinese Series, 2021, 64(5): 773-786.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I5/773


[1] Dunford N., Schwartz J. T., Linear Operators (I), Interscience, New York, 1957.
[2] Guo T. X., The Theory of Probabilistic Metric Spaces and Its Applications to Random Functional Analysis (in China), Master's thesis, Xi'an Jiaotong University, Xi'an, 1989.
[3] Guo T. X., Random Metric Theory and Its Applications (in China), Ph. D. thesis, Xi'an Jiaotong University, Xi'an, 1992.
[4] Guo T. X., A new approach to random functional analysis, In:Proceedings of the first China postdoctral academic conference, The China National Defense and Industry Press, 1993, Beijing, pp. 1150-1154.
[5] Guo T. X., Relations between some basic results derived from two kinds of topologies for a random locally convex module, J. Funct. Anal., 2010, 258:3024-3047.
[6] Guo T. X., Recent progress in random metric theory and its applications to conditional risk measures, Sci. China Ser. A, 2010, 54(4):633-660.
[7] Guo T. X., On some basic theorems of continuous module homomorphisms between random normed modules, J. Funct. Space. Appl., 2013, Article ID 989102, 13 pp.
[8] Guo T. X., Zhao S. E., Zeng X. L., The relations among the three kinds of conditional risk measures, Sci. China Math., 2014, 57(8):1753-1764.
[9] Guo T. X., Zhang E. X., Wang Y. C., et al., Two fixed point theorems in complete random normed modules and their applications to backward stochastic equations, J. Math. Anal. Appl., 2020, 483(2):123644, 30 pp.
[10] Guo T. X., Zhang E. X., Wu M. Z., et al., On random convex analysis, J. Nonlinear and Convex Anal., 2017, 18(11):1967-1996.
[11] Guo T. X., Zhang X., Stone's representation theorem of a group of strongly continuous unitary operators on complex complete random inner product modules, Sci. Sin. Math., 2012, 42:181-202.
[12] Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, World Publishing Company, Beijing, 2006.
[13] Schweizer B., Sklar A., Probabilistic Metric Spaces, Elsevier, New York, 1983; Dover Publications, New York, 2005.
[14] Tang Y. H., Random spectral theorems of self-adjoint random linear operators on complete complex random inner product modules, Linear and Multilinear Algebra, 2013, 61(3):409-416.
[15] Tang Y. H., The Wintner theorem in unital complete random normed algebras, Bull. Korean Math. Soc., 2013, 50(6):1973-1979.
[16] Thang D. H., Son T. C., Thinh Ng., Semigroups of continuous module homomorphisms on complex complete random normed modules, Lith. Math. J., 2019, 59(2):229-250.
[17] Wu M. Z., The Bishops-Phelps theorem in complete random normed modules endowed with the (ε, λ)-topology, J. Math. Anal. Appl., 2012, 391:648-652.
[18] Wu M. Z., Farkas' lemma in random locally convex modules and Minkowski-Weyl type results in L0(F, Rn), J. Math. Anal Appl., 2013, 404:300-309.
[19] Wu M. Z., Guo T. X., A counterexample shows that not every locally L0-convex topology is necessarily induced by a family of L0-seminorms, 2015, arXiv:1501.04400v1.
[20] Zhang X., On mean ergodic semigroups of random linear operators, Proc. Japan Acad. Ser. A, 2012, 88:53-58.
[21] Zhang X., Liu M., A characterization for a complete random normed module to be mean ergodic, Acta Math. Sin. Engl. Ser., 2017, 33(7):899-910.
[22] Zhang X., Liu M., On almost surely bounded semigroups of random linear operators, J. Math. Phy., 2013, 54(5):053517, 10 pp.
[23] Zhang X., Liu M., Guo T. X., The Hille-Yosida generation theorem for almost surely bounded C0-semigroups of continuous module homomorphisms, J. Nonlinear and Convex Anal., 2020, 18(11):1995-2009.
[24] Zhao S. E., Guo T. X., The random subreflexivity of complete random normed modules, Internat. J. Math., 2012, 23(3):14 pp.
[25] Zhao S. E., Shi G., A geometric form of the Hahn-Banach extension theorem for L0-linear functions and the Goldstine-Weston theorem in random normed modules, Sci. Sin. Math., 2011, 41(9):827-836.

[1]周青山, 李浏兰, 李希宁. 穿孔度量空间Gromov双曲性的几何特征[J]. 数学学报, 2021, 64(5): 737-746.
[2]安润玲, 高永兰. C*-代数上强保k-skew交换性的映射[J]. 数学学报, 2021, 64(4): 545-550.
[3]王瑞东, 周文乔. 复Banach空间?p(Γ)(1 ≤ p < ∞)的Mazur-Ulam性质[J]. 数学学报, 2021, 64(4): 529-544.
[4]黄穗, 王伟. Fock空间上对偶Toeplitz算子的交换性[J]. 数学学报, 2021, 64(4): 579-586.
[5]何忠华, 夏锦, 王晓峰. 圆环的加正规权Bergman空间上正符号Toeplitz算子[J]. 数学学报, 2021, 64(3): 353-374.
[6]吴照奇, 朱传喜, 袁成桂. 半序Menger PM-空间中广义弱压缩映射的最佳逼近点定理[J]. 数学学报, 2021, 64(2): 177-188.
[7]王伟华. 广义旋转Navier-Stokes方程解的整体适定性和解析性[J]. 数学学报, 2020, 63(5): 417-426.
[8]栾娜娜. 次分数布朗运动局部时的研究[J]. 数学学报, 2020, 63(1): 89-96.
[9]文娅琼, 李姣芬, 黎稳. 线性矩阵方程组AX=B,YA=D的最小二乘(R,Sσ)-交换解[J]. 数学学报, 2019, 62(6): 833-852.
[10]杜法鹏, 薛以锋. Banach空间度量广义逆的乘积扰动[J]. 数学学报, 2019, 62(6): 939-948.
[11]左占飞. 广义的约当-冯诺依曼型常数和正规结构[J]. 数学学报, 2019, 62(5): 809-816.
[12]罗未, 宋传宁, 许庆祥. Hilbert C*-模上可共轭算子的并联和[J]. 数学学报, 2019, 62(4): 541-552.
[13]万育基, 余志先, 孟艳玲. 状态依赖时滞非局部扩散方程的波前解[J]. 数学学报, 2019, 62(3): 479-496.
[14]左占飞, 唐春雷. Banach空间中的Jordan-von Neumann型常数和正规结构[J]. 数学学报, 2017, 60(3): 383-388.
[15]侯绳照, 罗晴, 卫淑云. 复平面上解析Banach空间的拟不变子空间[J]. 数学学报, 2017, 60(1): 97-112.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23820
相关话题/数学 空间 结构 交换 学报