删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

动态Gabor矩阵测量的相位恢复

本站小编 Free考研考试/2021-12-27

动态Gabor矩阵测量的相位恢复 李蕊, 刘蓓, 张庆月天津理工大学理学院 天津 300384 Phase Retrieval from Matrix Measurements of Dynamical Gabor Systems Rui LI, Bei LIU, Qing Yue ZHANGCollege of Science, Tianjin University of Technology, Tianjin 300384, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(444 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要相位恢复是一类由无相位采样值恢复待估信号的问题.本文讨论的采样是由动态Gabor系统得到的.我们证明了关于动态Gabor测量矩阵可相位恢复的充分条件,并给出了C2和R3中的例子.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-02-10
MR (2010):O174.2
基金资助:国家自然科学基金资助项目(11601383,11671214,11971348,12071230);天津市自然科学基金资助项目(18JCYBJC16200)和天津市教委科研计划项目(2018KJ148)
通讯作者:刘蓓,E-mail:liubei1@mail.nankai.edu.cnE-mail: liubei1@mail.nankai.edu.cn
作者简介: 李蕊,E-mail:lrsx@163.com;张庆月,E-mail:jczhangqingyue@163.com
引用本文:
李蕊, 刘蓓, 张庆月. 动态Gabor矩阵测量的相位恢复[J]. 数学学报, 2021, 64(5): 801-810. Rui LI, Bei LIU, Qing Yue ZHANG. Phase Retrieval from Matrix Measurements of Dynamical Gabor Systems. Acta Mathematica Sinica, Chinese Series, 2021, 64(5): 801-810.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I5/801


[1] Aceska R., Aldroubi A., Davis J., et al., Dynamical sampling in shift-invariant spaces, In:Mayeli A., Iosevich A., Jorgensen P. E. T., Ólafsson G. (eds.) Commutative and Noncommutative Harmonic Analysis and Applications, Vol. 603 of Contemporary Mathematics, American Mathematical Society, Providence, 2013, 139-148.
[2] Aldroubi A., Cabrelli C., Molter U., et al., Dynamical sampling, Appl. Comput. Harmon. Anal., 2017, 42:378-401.
[3] Aldroubi A., Davis J., Krishtal I., Dynamical sampling:Time space trade-off, Appl. Comput. Harmon. Anal., 2013, 34:495-503.
[4] Aldroubi A., Davis J., Krishtal I., Exact reconstruction of signals in evolutionary systems via spatiotemporal trade-off, J. Fourier Anal. Appl., 2015, 21:11-31.
[5] Aldroubi A., Krishtal I., Tang S., Phaseless reconstruction from space-time samples, Appl. Comput. Harmon. Anal., 2020, 48:395-414.
[6] Balan R., Bodmann B. G., Casazza P. G., et al., Painless reconstruction from magnitudes of frame coefficients, J. Fourier Anal. Appl., 2009, 15:488-501.
[7] Balan R., Casazza P., Edidin D., On signal reconstruction without phase, Appl. Comput. Harmon. Anal., 2006, 20:345-356.
[8] Bandeira A. S., Cahill J., Mixon D. G., et al., Saving phase:injectivity and stability for phase retrieval, Appl. Comput. Harmon. Anal., 2014, 37(1):106-125.
[9] Bauschke H. H., Combettes P. L., Luke D. R., Phase retrieval, error reduction algorithm, and Fienup variants:a view from convex optimization, J. Opt. Soc. Am. A, 2002, 19:1334-1345.
[10] Bojarovska I., Flinth A., Phase retrieval from Gabor measurements, J. Four. Anal. Appl., 2016, 22:542-567.
[11] Candès E. J., Strohmer T., Voroninski V., PhaseLift:Exact and stable signal recovery from magnitude measurements via convex programming, Comm. Pure and Appl. Math., 2013, 66:1241-1274.
[12] Feichtinger H. G., Gröchenig K., Gabor frames and time-frequency analysis of distributions, J. Funct. Anal., 1997, 146(2):464-495.
[13] Gerchberg R., Saxton W., A practical algorithm for the determination of the phase from image and diffraction plane pictures, Optik, 1972, 35:237-246.
[14] Griffin D., Lim J. S., Signal estimation from modified short-time Fourier trans-form, IEEE Trans. Acoust. Speech Signal Proces., 1984, 32:236-243.
[15] Gröchenig K., Foundations of Time-Frequency Analysis, Birkhäuser Boston Inc., Boston, 2001.
[16] Jaganathan K., Eldar Y. C., Hassibi B., STFT phase retrieval:uniqueness guarantees and recovery algorithms, IEEE J. Sel. Topics Signal Process., 2016, 10:770-781.
[17] Millane R., Phase retrieval in crystallography and optics, J. Opt. Soc. Amer. A, 1990, 7(3):394-411.
[18] Nawab S. H., Quatieri T. F., Lim J. S., Signal reconstruction from short-time Fourier transform magnitude, IEEE Trans. Acoust. Speech Signal Process., 1983, 31:986-998.
[19] Pfander G. E., Gabor Frames in Finite Dimensions, Finite Frames, Springer, Berlin, 2013, 193-239.
[20] Zhang Q. Y., Liu B., Li R., Dynamical sampling in multiply generated shift-invariant spaces, Appl. Anal., 2017, 96(5):760-770.
[21] Zheng G. A., Horstmeyer R., Yang C. H., Wide-field, High-resolution Fourier ptychographic microscopy, Nature Photonics, 2013, 7(9):739-745.

[1]杨娅娟, 余安康, 李宝德. 变量各向异性的非齐次拟微分象征类[J]. 数学学报, 2021, 64(5): 747-760.
[2]刘茵. 双线性Fourier乘子在变指标Besov空间的有界性[J]. 数学学报, 2021, 64(5): 865-874.
[3]王泽群, 魏明权, 张兴松, 燕敦验. Heisenberg群上的分数次Hardy算子在混合范空间上的最佳界[J]. 数学学报, 2021, 64(5): 811-820.
[4]张伟, 李云章. 四元数Hilbert空间中近似对偶与对偶标架[J]. 数学学报, 2021, 64(4): 613-626.
[5]刘荣辉, 刘风, 伍火熊, 薛庆营. 沿实解析子流形的粗糙核Marcinkiewicz积分[J]. 数学学报, 2021, 64(4): 687-704.
[6]瞿萌, 方小珍, 王敏. 多线性奇异积分交换子的有界性[J]. 数学学报, 2021, 64(4): 677-686.
[7]李云章, 王雅慧. 半直线伸缩调制框架集[J]. 数学学报, 2020, 63(1): 45-60.
[8]吴聪, 曾晓晨, 王晋茹. 带超级光滑噪声密度函数的小波自适应点态估计[J]. 数学学报, 2019, 62(5): 687-702.
[9]邓炳茂, 曾翠萍, 刘丹, 方明亮. 涉及导数与差分分担值的唯一性问题[J]. 数学学报, 2019, 62(5): 709-720.
[10]杨沿奇, 陶双平. θ型C-Z算子在加权变指数Morrey空间上的有界性[J]. 数学学报, 2019, 62(3): 503-514.
[11]程旺, 马涛. 奇异积分算子q-变差的定量最优加权估计[J]. 数学学报, 2019, 62(2): 279-286.
[12]陶双平, 逯光辉. Morrey空间上Marcinkiewicz积分与R[J]. 数学学报, 2019, 62(2): 269-278.
[13]张岩, 李云章. 单个生成元Walsh p-进制平移不变空间伸缩的交与并[J]. 数学学报, 2019, 62(1): 1-12.
[14]戴滨林. 单位球Bn上离散非初等小伸缩商拟共形群[J]. 数学学报, 2018, 61(3): 497-502.
[15]李建林. 自仿测度的非谱准则[J]. 数学学报, 2017, 60(3): 361-368.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23822
相关话题/数学 空间 测量 学报 指标