删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Banach格的正张量积的序连续

本站小编 Free考研考试/2021-12-27

Banach格的正张量积的序连续 张少勇1, 刘琪2, 黎永锦21. 哈尔滨理工大学理学院 哈尔滨 150080;
2. 中山大学数学学院 广州 510275 Order Continuity of Positive Tensor Products of Banach Lattices Shao Yong ZHANG1, Qi LIU2, Yong Jin LI21. Department of Mathematics, Harbin University of Science and Technology, Harbin 150080, P. R. China;
2. Department of Mathematics, Sun Yat-sen University, Guangzhou 510275, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(345 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要对于Banach序列格λ和Banach格Xλ|π| X(或λ|ε| X)表示λX的正投影(或射影)张量积.本文证明了:如果λσ-Levi空间,那么λ|π| X(或λ|ε| X)是序或σ-序连续的当且仅当λX都是序或σ-序连续的.同样证明了:如果λσ-序连续的,那么λ|π| X是Levi或σ-Levi空间当且仅当λX都是Levi或σ-Levi空间.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-03-09
MR (2010):O177.2
基金资助:国家自然科学基金资助项目(11971493);黑龙江省自然科学基金项目(A2018006)
通讯作者:黎永锦,E-mail:stslyj@mail.sysu.edu.cn
作者简介: 张少勇,E-mail:13904603565@139.com;刘琪,E-mail:liuq325@mail2.sysu.edu.cn
引用本文:
张少勇, 刘琪, 黎永锦. Banach格的正张量积的序连续[J]. 数学学报, 2021, 64(3): 405-412. Shao Yong ZHANG, Qi LIU, Yong Jin LI. Order Continuity of Positive Tensor Products of Banach Lattices. Acta Mathematica Sinica, Chinese Series, 2021, 64(3): 405-412.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I3/405


[1] Bu Q. Y., Buskes G., Schauder decompositions and the Fremlin projective tensor product of Banach lattices, J. Math. Anal. Appl., 2009, 355:335-351.
[2] Bu Q. Y., Li Y. J., Xue X. P., Some properties of the space of regular operators on atomic Banach lattices, Collect. Math., 2011, 62:131-137.
[3] Bu Q. Y., Wong N. C., Some geometric properties inherited by the positive tensor products of atomic Banach lattices, Indag. Math. (N.S.), 2012, 23:199-213.
[4] Fremlin D. H., Tensor products of Archimedean vector lattices, Amer. J. Math., 1972, 94:778-798.
[5] Fremlin D. H., Tensor products of Banach lattices, Math. Ann., 1974, 211:87-106.
[6] Meyer-Nieberg P., Banach Lattices, Springer-Verlag, Berlin, 1991.
[7] Wittstock G., Eine Bemerkung über Tensorprodukte von Banachverbänden, Arch. Math., 1974, 25:627-634.
[8] Wittstock G., Ordered Normed Tensor Products, In:Foundations of Quantum Mechanics and Ordered Linear Spaces, Lecture Notes in Physics, Vol. 29, pp. 67-84. Springer, Berlin, 1974.

[1]冯育强;刘三阳. 半序空间中一类算子方程的可解性[J]. Acta Mathematica Sinica, English Series, 2003, 46(2): 411-416.
[2]汪荣明. 集值序上鞅[J]. Acta Mathematica Sinica, English Series, 2000, 43(6): 1001-101.
[3]定光桂. 一类m-空间中的等距逼近问题[J]. Acta Mathematica Sinica, English Series, 1990, 33(2): 236-243.
[4]薛行鸿. Banach空间中的Pramart的收敛性[J]. Acta Mathematica Sinica, English Series, 1986, 29(3): 389-392.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23758
相关话题/空间 哈尔滨理工大学 理学院 数学 中山大学