摘要令?n ∈ C(D),?j ∈ C(T)和K ≥ 1,其中n ≥ 2为整数,j ∈{1,...,n-1}.本文建立了单位圆盘D到自身且满足非齐次多重调和方程Δnf=?n以及相应边界值条件:Δn-1f|T=?n-1,...,Δ1f|T=?1和f(0)=0的K-拟共形映射f的一个Schwarz-Pick型不等式.进一步地,我们证明了这些结果在||?j||∞ → 0(j=1,...,n)和K → 1+的意义下是渐近精确的,其中||?n||∞:=supz∈D|?n(z)|和||?j||∞:=supz∈T|?j(z)|(j=1,2,...,n-1). | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2019-09-29 | | 基金资助:国家自然科学基金(11701111);广东省自然科学基金项目(2016A030310257,2015A030313346);南开大学陈省身数学研究所访问****计划项目;广东金融学院2020年“优博”科研启动项目(0000-KC2019002001137);广东省普通高校特色创新项目(2019KTSCX111)
| 通讯作者:袁文俊,E-mail:wjyuan1957@126.com | 作者简介: 钟德光,E-mail:huachengzhon@163.com;孟凡宁,E-mail:mfnfdbx@163.com |
[1] Ahlfors L. V., An extension of Schwarz's lemma, Trans. Amer. Math. Soc., 1938, 43:359-381. [2] Beardon A. F., Minda D., A multi-point Schwarz-Pick lemma, J. Anal. Math., 2004, 92:81-104. [3] Begehr H., Vu T. N. H., Zhang Z., Polyharmonic Dirichlet problems, Proc. Steklov Inst. Math., 2006, 255:13-34. [4] Chen X. D., Fang A. N., A Schwarz-Pick inequality for harmonic quasiconformal mappings and its applications, J. Math. Anal. Appl., 2010, 369:22-28. [5] Chen S. L., Kalaj D., The Schwarz type lemmas and the Landau type theorem of mappings satisfying Poisson's equations, Complex Anal. Oper. Theory, 2019, 13:2049-2068. [6] Chen S. L., Kalaj D., On asymptotically sharp bi-Lipschitz inequalities of quasiconformal mappings satisfying inhomogeneous polyharmonic equations, J. Geom. Anal., 2020, https://doi.org/10.1007/s12220-020-00460-9. [7] Chen S. L., Zhu J. F., Schwarz type lemmas and a Landau type theorem of functions satisfying the biharmonic equation, Bull. Sci. Math., 2019, 154:36-63. [8] Chen X. D., Qian T., Estimate of hyperbolically partial derivatives of ρ-harmonic quasiconformal mappings and its applications, Complex Var. Elliptic Equ., 2015, 60:875-892. [9] Chen X. D., Distortion estimates of the hyperbolic Jacobians of harmonic quasiconformal mappings, J. Huaqiao Univ. Nat. Sci., 2010, 31:351-355. [10] Dai S. Y., Pan Y. F., Note on Schwarz-Pick estimates for bounded and positive real part analytic functions, Proc. Amer. Math. Soc., 2008613:635-640. [11] Elin M., Jacobzon F., Levenshtein M., et al., The Schwarz lemma:rigidity and dynamics, In:Vasilév, A. (ed.) Harmonic and Complex Analysis and its Applications, Trends in Mathematics, Springer, Switzerland, 2014:135-230. [12] Heinz E., On one-to-one harmonic mappings, Pacific J. Math., 1959, 9:101-105. [13] Hethcote H. W., Schwarz lemma analogues for harmonic functions, Int. J. Math. Educ. Sci. Technol., 1977, 8:65-67. [14] Kalaj D., On quasiconformal harmonic maps between surfaces, Int. Math. Res. Notices, 2015, 2:355-380. [15] Kalaj D., Zhu J. F., Schwarz Pick type inequalities for harmonic maps between Riemann surfaces, Complex Var. Elliptic Equ., 2018, 69:1364-1375. [16] Kne?evi? M., Mateljevi? M., On the quasi-isometries of harmonic quasiconformal mappings, J. Math. Anal. Appl., 2007, 334:404-413. [17] Lehto O., Virtanen K. I., Quasiconformal Mappings in the Plane, Springer-Verlag, New York, 1973. [18] MacCluer B., Stroethoff K, Zhao R., Generalized Schwarz-Pick estimates, Proc. Amer. Math. Soc., 2003, 131:593-599. [19] Osserman R. A., A new variant of the Schwarz-Pick-Ahlfors lemma, Manuscr Math., 1999, 100:123-129. [20] Pavlovi? M., Introduction to function spaces on the disk, Posebna Izdanja (Special Editions), Vol. 20, Matematiki Institut SANU, Belgrade, 2004. [21] Wan T., Constant mean curvature surface, harmonic maps, and universal Teichmüller space, J. Differential Geom., 1992, 35:643-657. [22] Yau S. T., A general Schwarz lemma for Kähler manifolds, Amer. J. Math., 1978, 100:197-203. [23] Zhong D. G., Tu H. Q., Heinz type inequalities for mappings satisfying Poisson's equation, Indag. Math., 2019, 30:98-105. [24] Zhong D. G., Yuan W. J., On estimate of hyperbolically partial derivatives of K-quasiconformal mappings satisfying Poisson's equation and its applications, Houston J. Math., 2019, 45:1055-1070. [25] Zhu J. F., Schwarz-Pick type estimates for gradients of pluriharmonic mappings of the unit ball, Results Math., 2019, 74:114, DOI:10.1007/s00025-019-1037-4.
|
[1] | 王海蒙, 周璇, 赵玉娟. 四元Heisenberg群上次拉普拉斯算子的m幂次的基本解[J]. 数学学报, 2020, 63(3): 229-244. | [2] | 黄志勇, 周泽民. 渐近Teichmüller空间的不唯一性[J]. 数学学报, 2019, 62(5): 703-708. | [3] | 刘志学, 张庆彩. 涉及移动目标的亚纯映射唯一性定理[J]. 数学学报, 2019, 62(5): 783-794. | [4] | 黎深莲, 张学军. 多复变中正规权Zygmund空间上的几个性质[J]. 数学学报, 2019, 62(5): 795-808. | [5] | 王晓峰, 夏锦, 陈建军. 广义Fock空间上的Hankel算子[J]. 数学学报, 2019, 62(4): 561-572. | [6] | 王晓峰, 夏锦, 陈建军. 广义Segal-Bargmann空间上无界Toeplitz算子的交换[J]. 数学学报, 2019, 62(3): 409-426. | [7] | 徐洪焱, 刘三阳. 慢增长的Laplace-Stieltjes变换的逼近[J]. 数学学报, 2019, 62(3): 457-468. | [8] | 苏敏, 李玉华. 开平面C上的亚纯函数与完备极小曲面的Gauss映射[J]. 数学学报, 2019, 62(3): 515-520. | [9] | 高凌云, 刘曼莉. 一些差分—复合函数方程的亚纯解[J]. 数学学报, 2018, 61(5): 705-714. | [10] | 王朝君, 崔艳艳, 刘浩. Bn上推广的Roper-Suffridge算子的性质[J]. 数学学报, 2016, 59(6): 729-744. | [11] | 陈创鑫, 陈宗煊. 亚纯函数及其差分的唯一性[J]. 数学学报, 2016, 59(6): 821-834. | [12] | 刘晓曼, 刘永民, 于燕燕. Riemann-Stieltjes算子的本性范数[J]. 数学学报, 2016, 59(6): 847-858. | [13] | 周继振, 李颂孝. Morrey型空间刻画和Carleson测度[J]. 数学学报, 2016, 59(5): 577-584. | [14] | 陈建军, 王晓峰, 夏锦. 有界对称区域上Dirichlet空间中的紧Toeplitz算子[J]. Acta Mathematica Sinica, English Series, 2015, 58(6): 923-934. | [15] | 黄志波. 零级亚纯函数与多项式的复合函数的对数导数引理及其应用[J]. Acta Mathematica Sinica, English Series, 2015, 58(5): 765-772. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23759
Frchet空间上集值微分方程初值问题解的高阶收敛性王培光,邢珍钰,吴曦冉河北大学数学与信息科学学院保定071002Higher-OrderConvergenceofSolutionsofInitialValueProblemforSetDifferentialEquationsin ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Banach空间中正则非退化异宿环的Lipschitz扰动陈员龙,骆世广广东金融学院金融数学与统计学院广州510521TheLipschitzPerturbationsofRegularNondegenrateHeteroclinicCyclesinBanachSpacesYuanLongCHEN, ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27半序MengerPM-空间中广义弱压缩映射的最佳逼近点定理吴照奇1,朱传喜1,袁成桂21.南昌大学理学院数学系南昌330031;2.英国斯旺西大学数学系斯旺西SA28PPBestProximityPointTheoremsforGeneralizedWeakContractiveMappingsin ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27完备度量空间中的混沌判定吴小英,陈员龙,王芬广东金融学院金融数学与统计学院广州510521ChaoticCriteriainCompleteMetricSpacesXiaoYingWU,YuanLong,CHENFenWANGSchoolofFinancialMathematicsandStatis ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27空间几何常数与集值非扩张映射的不动点左占飞重庆三峡学院数学与统计学院重庆404100SomeGeometricConstantsandFixedPointsforMultivaluedNonexpansiveMappingsZhanFeiZUODepartmentofMathematicsandSt ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Banach空间上p-fusion框架的若干等价描述林丽琼1,张云南21.福州大学数学与计算机科学学院福州350108;2.福建师范大学数学与信息学院福州350108SomeEquivalentDescriptionsofp-fusionFramesonBanachSpacesLiQiongLIN1 ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27加权变指标Herz-Morrey空间上的双线性Hardy算子的交换子王盛荣,徐景实桂林电子科技大学数学与计算科学学院桂林541004CommutatorsofBilinearHardyOperatorsonWeightedHerzMorreySpaceswithVariableExpo ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27加权Bloch空间上复合算子的线性组合张利,楚秀娇南阳师范学院南阳473061LinearCombinationsofCompositionOperatorsonWeightedBlochTypeSpaceLiZHANG,XiuJiaoCHUNanyangNormalUniversity,Nanya ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27bp(2)空间中的等距映射王瑞东,王普天津理工大学理学院天津300384TheIsometryonbp(2)SpaceRuiDongWANG,PuWANGDepartmentofMathematics,TianjinUniversityofTechnology,Tianjin300384,P.R.C ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27改进的Tsirelson空间TM上的Wigner定理熊晓蕾,谭冬妮天津理工大学数学系天津300384Wigner'sTheoremontheModifiedTsirelsonSpaceTMXiaoLeiXIONG,DongNiTANDepartmentofMathematics,TianjinUni ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|