删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

非齐次多重调和方程拟共形映射的一个Schwarz-Pick型不等式

本站小编 Free考研考试/2021-12-27

非齐次多重调和方程拟共形映射的一个Schwarz-Pick型不等式 钟德光1, 孟凡宁2, 袁文俊31. 广东金融学院应用统计系 广州 510521;
2. 广州大学数学与信息科学学院 广州 510006;
3. 广州大学华软软件学院 广州 510990 On a Schwarz-Pick Type Inequality for Quasiconformal Mappings Inhomogeneous Polyharmonic Equation De Guang ZHONG1, Fan Ning MENG2, Wen Jun YUAN31. Department of Applied Statistics, Guangdong University of Finance, Guangzhou 510521, P. R. China;
2. School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, P. R. China;
3. South China Institute of Software Engineering, Guangzhou University, Guangzhou 510990, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(516 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要?nC(D),?jC(T)和K ≥ 1,其中n ≥ 2为整数,j ∈{1,...,n-1}.本文建立了单位圆盘D到自身且满足非齐次多重调和方程Δnf=?n以及相应边界值条件:Δn-1f|T=?n-1,...,Δ1f|T=?1f(0)=0的K-拟共形映射f的一个Schwarz-Pick型不等式.进一步地,我们证明了这些结果在||?j||∞ → 0(j=1,...,n)和K → 1+的意义下是渐近精确的,其中||?n||:=supz∈D|?nz)|和||?j||:=supz∈T|?jz)|(j=1,2,...,n-1).
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-09-29
MR (2010):O174.5
基金资助:国家自然科学基金(11701111);广东省自然科学基金项目(2016A030310257,2015A030313346);南开大学陈省身数学研究所访问****计划项目;广东金融学院2020年“优博”科研启动项目(0000-KC2019002001137);广东省普通高校特色创新项目(2019KTSCX111)
通讯作者:袁文俊,E-mail:wjyuan1957@126.com
作者简介: 钟德光,E-mail:huachengzhon@163.com;孟凡宁,E-mail:mfnfdbx@163.com
引用本文:
钟德光, 孟凡宁, 袁文俊. 非齐次多重调和方程拟共形映射的一个Schwarz-Pick型不等式[J]. 数学学报, 2021, 64(3): 413-426. De Guang ZHONG, Fan Ning MENG, Wen Jun YUAN. On a Schwarz-Pick Type Inequality for Quasiconformal Mappings Inhomogeneous Polyharmonic Equation. Acta Mathematica Sinica, Chinese Series, 2021, 64(3): 413-426.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I3/413


[1] Ahlfors L. V., An extension of Schwarz's lemma, Trans. Amer. Math. Soc., 1938, 43:359-381.
[2] Beardon A. F., Minda D., A multi-point Schwarz-Pick lemma, J. Anal. Math., 2004, 92:81-104.
[3] Begehr H., Vu T. N. H., Zhang Z., Polyharmonic Dirichlet problems, Proc. Steklov Inst. Math., 2006, 255:13-34.
[4] Chen X. D., Fang A. N., A Schwarz-Pick inequality for harmonic quasiconformal mappings and its applications, J. Math. Anal. Appl., 2010, 369:22-28.
[5] Chen S. L., Kalaj D., The Schwarz type lemmas and the Landau type theorem of mappings satisfying Poisson's equations, Complex Anal. Oper. Theory, 2019, 13:2049-2068.
[6] Chen S. L., Kalaj D., On asymptotically sharp bi-Lipschitz inequalities of quasiconformal mappings satisfying inhomogeneous polyharmonic equations, J. Geom. Anal., 2020, https://doi.org/10.1007/s12220-020-00460-9.
[7] Chen S. L., Zhu J. F., Schwarz type lemmas and a Landau type theorem of functions satisfying the biharmonic equation, Bull. Sci. Math., 2019, 154:36-63.
[8] Chen X. D., Qian T., Estimate of hyperbolically partial derivatives of ρ-harmonic quasiconformal mappings and its applications, Complex Var. Elliptic Equ., 2015, 60:875-892.
[9] Chen X. D., Distortion estimates of the hyperbolic Jacobians of harmonic quasiconformal mappings, J. Huaqiao Univ. Nat. Sci., 2010, 31:351-355.
[10] Dai S. Y., Pan Y. F., Note on Schwarz-Pick estimates for bounded and positive real part analytic functions, Proc. Amer. Math. Soc., 2008613:635-640.
[11] Elin M., Jacobzon F., Levenshtein M., et al., The Schwarz lemma:rigidity and dynamics, In:Vasilév, A. (ed.) Harmonic and Complex Analysis and its Applications, Trends in Mathematics, Springer, Switzerland, 2014:135-230.
[12] Heinz E., On one-to-one harmonic mappings, Pacific J. Math., 1959, 9:101-105.
[13] Hethcote H. W., Schwarz lemma analogues for harmonic functions, Int. J. Math. Educ. Sci. Technol., 1977, 8:65-67.
[14] Kalaj D., On quasiconformal harmonic maps between surfaces, Int. Math. Res. Notices, 2015, 2:355-380.
[15] Kalaj D., Zhu J. F., Schwarz Pick type inequalities for harmonic maps between Riemann surfaces, Complex Var. Elliptic Equ., 2018, 69:1364-1375.
[16] Kne?evi? M., Mateljevi? M., On the quasi-isometries of harmonic quasiconformal mappings, J. Math. Anal. Appl., 2007, 334:404-413.
[17] Lehto O., Virtanen K. I., Quasiconformal Mappings in the Plane, Springer-Verlag, New York, 1973.
[18] MacCluer B., Stroethoff K, Zhao R., Generalized Schwarz-Pick estimates, Proc. Amer. Math. Soc., 2003, 131:593-599.
[19] Osserman R. A., A new variant of the Schwarz-Pick-Ahlfors lemma, Manuscr Math., 1999, 100:123-129.
[20] Pavlovi? M., Introduction to function spaces on the disk, Posebna Izdanja (Special Editions), Vol. 20, Matematiki Institut SANU, Belgrade, 2004.
[21] Wan T., Constant mean curvature surface, harmonic maps, and universal Teichmüller space, J. Differential Geom., 1992, 35:643-657.
[22] Yau S. T., A general Schwarz lemma for Kähler manifolds, Amer. J. Math., 1978, 100:197-203.
[23] Zhong D. G., Tu H. Q., Heinz type inequalities for mappings satisfying Poisson's equation, Indag. Math., 2019, 30:98-105.
[24] Zhong D. G., Yuan W. J., On estimate of hyperbolically partial derivatives of K-quasiconformal mappings satisfying Poisson's equation and its applications, Houston J. Math., 2019, 45:1055-1070.
[25] Zhu J. F., Schwarz-Pick type estimates for gradients of pluriharmonic mappings of the unit ball, Results Math., 2019, 74:114, DOI:10.1007/s00025-019-1037-4.

[1]王海蒙, 周璇, 赵玉娟. 四元Heisenberg群上次拉普拉斯算子的m幂次的基本解[J]. 数学学报, 2020, 63(3): 229-244.
[2]黄志勇, 周泽民. 渐近Teichmüller空间的不唯一性[J]. 数学学报, 2019, 62(5): 703-708.
[3]刘志学, 张庆彩. 涉及移动目标的亚纯映射唯一性定理[J]. 数学学报, 2019, 62(5): 783-794.
[4]黎深莲, 张学军. 多复变中正规权Zygmund空间上的几个性质[J]. 数学学报, 2019, 62(5): 795-808.
[5]王晓峰, 夏锦, 陈建军. 广义Fock空间上的Hankel算子[J]. 数学学报, 2019, 62(4): 561-572.
[6]王晓峰, 夏锦, 陈建军. 广义Segal-Bargmann空间上无界Toeplitz算子的交换[J]. 数学学报, 2019, 62(3): 409-426.
[7]徐洪焱, 刘三阳. 慢增长的Laplace-Stieltjes变换的逼近[J]. 数学学报, 2019, 62(3): 457-468.
[8]苏敏, 李玉华. 开平面C上的亚纯函数与完备极小曲面的Gauss映射[J]. 数学学报, 2019, 62(3): 515-520.
[9]高凌云, 刘曼莉. 一些差分—复合函数方程的亚纯解[J]. 数学学报, 2018, 61(5): 705-714.
[10]王朝君, 崔艳艳, 刘浩. Bn上推广的Roper-Suffridge算子的性质[J]. 数学学报, 2016, 59(6): 729-744.
[11]陈创鑫, 陈宗煊. 亚纯函数及其差分的唯一性[J]. 数学学报, 2016, 59(6): 821-834.
[12]刘晓曼, 刘永民, 于燕燕. Riemann-Stieltjes算子的本性范数[J]. 数学学报, 2016, 59(6): 847-858.
[13]周继振, 李颂孝. Morrey型空间刻画和Carleson测度[J]. 数学学报, 2016, 59(5): 577-584.
[14]陈建军, 王晓峰, 夏锦. 有界对称区域上Dirichlet空间中的紧Toeplitz算子[J]. Acta Mathematica Sinica, English Series, 2015, 58(6): 923-934.
[15]黄志波. 零级亚纯函数与多项式的复合函数的对数导数引理及其应用[J]. Acta Mathematica Sinica, English Series, 2015, 58(5): 765-772.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23759
相关话题/数学 空间 广州 广东金融学院 广州大学