摘要本文主要研究可压缩非等熵平面磁流体动力学方程组的Cauchy问题整体经典解的正则性,其中方程组的粘性系数λ,μ,磁扩散系数η和热传导系数κ都是比容v和温度θ的函数,正比于h(v)θα,h是满足一定条件的非退化光滑函数.在正则性准则∫0 +∞||b||L∞2ds <+∞的条件下,当α适当小时,我们证明了大初值整体经典解的存在性. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2019-03-26 | | 基金资助:国家自然科学基金资助项目(11571232,11831011)
| 通讯作者:尚朝阳E-mail: shangzhaoyang@sjtu.edu.cn | 作者简介: 凯芳,E-mail:Adley_Ren@sjtu.edu.cn;唐福全,E-mail:dongfang_tang@sjtu.edu.cn |
[1] Antontsev S. N., Kazhikhov A. V., Monakhov V. N., Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam, 1990. [2] Chen G. Q., Wang D., Global solutions of nonlinear magnetohydrodynamics with large initial data, J. Differential Equations, 2002, 182:344-376. [3] Ding S., Wen H., Zhu C., Global classical large solutions to 1D compressible Navier-Stokes equations with density-dependent viscosity and vacuum, J. Differential Equations, 2011, 251:1696-1725. [4] Fan J., Huang S., Li F., Global strong solutions to the planar compressible magnetohydrodynamic equations with large initial data and vacuum, Kinet. Relat. Models, 2017, 10:1035-1053. [5] Fan J., Jiang S., Nakamura G., Vanishing shear viscosity limit in the magnetohydrodynamic equations, Comm. Math. Phys., 2007, 270:691-708. [6] Fan J., Jiang S., Nakamura G., Stability of weak solutions to equations of magnetohydrodynamics with Lebesgue initial data, J. Differential Equations, 2011, 251:2025-2036. [7] Guo Z., Zhu C., Global weak solutions and asymptotic behavior to 1D compressible Navier-Stokes equations with density-dependent viscosity and vacuum, J. Differential Equations, 2010, 248:2768-2799. [8] Hu Y., Ju Q., Global large solutions of magnetohydrodynamics with temperature-dependent heat conductivity, Z. Angew. Math. Phys., 2015, 66:865-889. [9] Itaya N., A survey on two model equations for compressible viscous fluid, J. Math. Kyoto Univ., 1979, 19:293-300. [10] Jenssen H. K., Karper T. K., One-dimensional compressible flow with temperature dependent transport coefficients, SIAM J. Math. Anal., 2010, 42:904-930. [11] Jiang S., Zlotnik A., Global well-posedness of the Cauchy problem for the equations of a one-dimensional viscous heat-conducting gas with Lebesgue initial data, Proc. Roy. Soc. Edinburgh Sect. A, 2004, 134:939-960. [12] Jiang S., Xin Z., Zhang P., Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity, Methods Appl. Anal., 2005, 12:239-251. [13] Jiang S., Xin Z., Zhang P., Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Academic Press, 1967, 864-880. [14] Jiu Q., Xin Z., The Cauchy problem for 1D compressible flows with density-dependent viscosity coefficients, Kinet. Relat. Models, 2008, 1:313-330. [15] Kanel J. I., A model system of equations for the one-dimensional motion of a gas, Differencial'nye Uravnenija, 1968, 4:721-734. [16] Kawohl B., Global existence of large solutions to initial-boundary value problems for a viscous, heatconducting, one-dimensional real gas, J. Differential Equations, 1985, 58:76-103. [17] Kawashima S., Nishida T., Global solutions to the initial value problem for the equations of one-dimensional motion of viscous polytropic gases, J. Math. Kyoto Univ., 1981, 21:825-837. [18] Kawashima S., Okada M., Smooth global solutions for the one-dimensional equations in magnetohydrodynamics, Proc. Japan Acad. Ser. A Math. Sci., 1982, 58:384-387. [19] Kazhikhov A. V., On the Cauchy problem for the equations of a viscous gas, Sibirsk. Mat. Zh., 1982, 23:60-64. [20] Kazhikhov A. V., Shelukhin V. V., Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas, Prikl. Mat. Meh., 1977, 41:282-291. [21] Li H. L., Li J., Xin Z., Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations, Comm. Math. Phys., 2008, 281:401-444. [22] Landau L. D., Lifshits E. M., The Electrodynamics of Continuous Media (2nd Revised and Enlarged Edition), Moscow, 1982. [23] Luo T., On the outer pressure problem of a viscous heat-conductive one-dimensional real gas, Acta Math. Appl. Sinica, English Ser., 1997, 13:251-264. [24] Li T., Qin T., Physics and Partial Differential Equation, Higher Education Press, Beijing, 2013. [25] Li Y., Pan R., Zhu S., Recent progress on classical solutions for compressible isentropic Navier-Stokes equations with degenerate viscosities and vacuum, Bull. Braz. Math. Soc., 2016, 47:507-519. [26] Li Y., Pan R., Zhu S., On classical solutions to 2D shallow water equations with degenerate viscosities, J. Math. Fluid Mech., 2017, 19:151-190. [27] Li Y., Shang Z., Global large solutions to one-dimensional magnetohydrodynamics equations with temperature-dependent viscosity, J. Hyperbolic Diff. Equ., 2019, 16:443-493. [28] Liang Z., Shuai J., Global strong solution for the full MHD equations with vacuum and large data, Nonlinear Anal. Real World Appl., 2018, 44:385-400. [29] Liu H., Yang T., Zhao H., et al., One-dimensional compressible Navier-Stokes equations with temperature dependent transport coefficients and large data, SIAM J. Math. Anal., 2014, 46:2185-2228. [30] Liu T. P., Xin Z., Yang T., Vacuum states for compressible flow, Discrete Contin. Dynam. Systems, 1998, 4:1-32. [31] Matsumura A., Nishida T., The initial value problem for the equations of motion of viscous and heatconductive gases, J. Math. Kyoto Univ., 1980, 20:67-104. [32] Mellet A., Vasseur A., Existence and uniqueness of global strong solutions for one-dimensional compressible Navier-Stokes equations, SIAM J. Math. Anal., 2007, 39:1344-1365. [33] Nash J., Le problème de Cauchy pour le? equations différentielles d'un fluide général, Bull. Soc. Math. France, 1962, 90:487-497. [34] Nishihara K., Yang T., Zhao H., Nonlinear stability of strong rarefaction waves for compressible Navier-Stokes equations, SIAM J. Math. Anal., 2004, 35:1561-1597. [35] Okada M., Kawashima S., On the equations of one-dimensional motion of compressible viscous fluids, J. Math. Kyoto Univ., 1983, 23:55-71. [36] Pan R., Zhang W., Compressible Navier-Stokes equations with temperature dependent heat conductivity, Commun. Math. Sci., 2015, 13:401-425. [37] Polovin R. V., Demutskii V. P., Fundamentals of Magnetohydrodynamics, Consultants Bureau, New York, 1990. [38] Qin X., Yang T., Yao Z. A., et al., A study on the boundary layer for the planar magnetohydrodynamics system, Acta Math. Sci. Ser. B, Engl. Ed., 2015, 35:787-806. [39] Smagulov S. S., Durmagambetov A. A., Iskenderova D. A., Cauchy problems for equations of magnetogasdynamics, Differentsial'nye Uravneniya, 1993, 29:337-348. [40] Tan Z., Yang T., Zhao H., et al., Global solutions to the one-dimensional compressible Navier-Stokes-Poisson equations with large data, SIAM J. Math. Anal., 2013, 45:547-571. [41] Vasseur A. F., Yu C., Existence of global weak solutions for 3D degenerate compressible Navier-Stokes equations, Invent. Math., 2016, 206:935-974. [42] Vol'pert A. I., Hudjaev S. I., The Cauchy problem for composite systems of nonlinear differential equations, Mat. Sb. (N.S.), 1972, 87:504-528. [43] Vong S. W., Yang T., Zhu C., Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum, II, J. Differential Equations, 2003, 192:475-501. [44] Wang T., One dimensional p-th power Newtonian fluid with temperature-dependent thermal conductivity, Commun. Pure Appl. Anal., 2016, 15:477-494. [45] Wang T., Zhao H., One-dimensional compressible heat-conducting gas with temperature-dependent viscosity, Math. Models Methods Appl. Sci., 2016, 26:2237-2275. [46] Yang T., Zhu C., Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum, Comm. Math. Phys., 2002, 230:329-363. [47] Zel'dovich Y. B., Raizer Y. P., Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Vol. II, Academic Press, New York, 1967. [48] Zhang P., Zhao J., The existence of local solutions for the compressible Navier-Stokes equations with the density-dependent viscosities, Commun. Math. Sci., 2014, 12:1277-1302. [49] Zhu S., Existence results for viscous polytropic fluids with degenerate viscosity coefficients and vacuum, J. Differential Equations, 2015, 259:84-119.
|
[1] | 张辉, 陈鹏飞. 旋度与磁场微极流方程的正则性[J]. 数学学报, 2018, 61(6): 1049-1056. | [2] | 刘存明, 刘见礼. 一阶拟线性双曲型方程组Goursat问题的整体经典解[J]. Acta Mathematica Sinica, English Series, 2013, 56(2): 145-154. | [3] | 罗显康, 杨晗. PLn∩PLp空间中MHD方程组强解的存在唯一性及衰减性质[J]. Acta Mathematica Sinica, English Series, 2011, 54(1): 31-40. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23684
加权变指标Herz-Morrey空间上的双线性Hardy算子的交换子王盛荣,徐景实桂林电子科技大学数学与计算科学学院桂林541004CommutatorsofBilinearHardyOperatorsonWeightedHerzMorreySpaceswithVariableExpo ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27加权Bloch空间上复合算子的线性组合张利,楚秀娇南阳师范学院南阳473061LinearCombinationsofCompositionOperatorsonWeightedBlochTypeSpaceLiZHANG,XiuJiaoCHUNanyangNormalUniversity,Nanya ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27bp(2)空间中的等距映射王瑞东,王普天津理工大学理学院天津300384TheIsometryonbp(2)SpaceRuiDongWANG,PuWANGDepartmentofMathematics,TianjinUniversityofTechnology,Tianjin300384,P.R.C ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27改进的Tsirelson空间TM上的Wigner定理熊晓蕾,谭冬妮天津理工大学数学系天津300384Wigner'sTheoremontheModifiedTsirelsonSpaceTMXiaoLeiXIONG,DongNiTANDepartmentofMathematics,TianjinUni ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27非齐型空间上分数型Marcinkiewicz积分算子的加权估计林海波,王宸雁中国农业大学理学院北京100083WeightedEstimatesforFractionalTypeMarcinkiewiczIntegralOperatorsonNon-homogeneousSpacesHaiBoLIN ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27TVS-锥度量空间中的统计收敛林艳芳,鲍玲鑫福建农林大学计算机与信息学院福州350002StatisticalConvergenceinTVS-coneMetricSpacesYanFangLIN,LingXinBAOSchoolofComputerandInformation,FujianAgri ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27广义n-赋范空间中的Vogt定理马玉梅大连民族大学理学院大连116600TheVogtTheoreminG-n-normedSpacesYuMeiMASchoolofScience,DalianMinzuUniversity,Dalian116600,P.R.China摘要图/表参考文献相关文章全文 ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Sobolev空间中非电阻MHD方程局部适定性李亚涛中国工程物理研究院研究生院北京100088LocalWell-posednessfortheNon-resistiveMHDEquationsinSobolevSpacesYaTaoLITheGraduateSchoolofChinaAcademy ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一些算子的交换子在广义Morrey空间上的紧性郭庆栋,周疆新疆大学数学与系统科学学院乌鲁木齐830046CompactnessofCommutatorsforSomeOperatorsonGeneralizedMorreySpacesQingDongGUO,JiangZHOUCollegeofMat ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27点星网与度量空间的映像林寿1,黄燕晖2,张静21.宁德师范学院数理学院宁德352100;2.闽南师范大学数学与统计学院漳州363000Point-starNetworksandImagesofMetricSpacesShouLIN1,YanHuiHUANG2,JingZHANG21.Schoolof ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|