删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

六维近凯勒流形的Kodaira维数

本站小编 Free考研考试/2021-12-27

六维近凯勒流形的Kodaira维数 陈豪杰, 王冠明浙江师范大学数学系 金华 321004 Kodaira Dimension of Nearly Kähler 6-manifolds Hao Jie CHEN, Guan Ming WANGDepartment of Mathematics, Zhejiang Normal University, Jinhua 321004, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(520 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文主要研究了六维近凯勒流形的典范丛和Kodaira维数.证明了六维严格近凯勒流形的典范丛是拟全纯平凡的,从而其Kodaira维数为0.特别地,证明了三维复射影空间CP3具有Kodaira维数不为-∞的近复结构.对于齐性的六维严格近凯勒流形,具体构造了它们典范丛的整体生成元.证明了齐性近凯勒流形F3和CP3的Hodge数h1,0h2,0h2,3h1,3均为零.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-11-26
MR (2010):O186.1
基金资助:国家自然科学基金资助项目(11901530);浙江省自然科学基金资助项目(LY19A010017)
作者简介: 陈豪杰,E-mail:chj@zjnu.edu.cn;王冠明,E-mail:310334707@qq.com
引用本文:
陈豪杰, 王冠明. 六维近凯勒流形的Kodaira维数[J]. 数学学报, 2021, 64(1): 87-98. Hao Jie CHEN, Guan Ming WANG. Kodaira Dimension of Nearly Kähler 6-manifolds. Acta Mathematica Sinica, Chinese Series, 2021, 64(1): 87-98.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I1/87


[1] Agricola I., Bazzoni G., Goertsches O., et al., On the history of the Hopf problem, Diff. Geom. Appl., 2018, 57:1-9.
[2] Barth W., Hulek K., Peters C., et al., Compact Complex Surfaces, 2nd edn, Springer, Berlin, Heidelberg, 2004.
[3] Butruille J. B., Classification des variétés approximativement kähleriennes homogènes, Ann. Global Anal. Geom., 2005, 27(3):201-225.
[4] Butruille J. B., Homogeneous Nearly Kähler Manifolds, Handbook of Pseudo-Riemannian Geometry and Supersymmetry, 2010, 399-423.
[5] Carrión R., Some Special Geometries Defined by Lie groups, Ph.D. Thesis, Oxford, 1993.
[6] Chen H., Zhang W., Kodaira dimensions of almost complex manifolds l, arXiv:1808.00885.
[7] Chen H., Zhang W., Kodaira dimensions of almost complex manifolds ll, arXiv:2004.12825.
[8] Dorfmeister J. G., Zhang W., The Kodaira dimension of Lefschetz fibrations, Asian J. Math., 2009, 13(3):341-357.
[9] Ehresmann C., Libermann P., Sur les structures presque hermitiennes isotropes, C. R. Acad. Sci. Paris, 1951, 232:1281-1283.
[10] Friedrich T., Grunewald R., On the first eigenvalue of the Dirac operator on 6-dimensional manifolds, Ann. Global Anal. Geom., 1985, 3:265-273.
[11] Foscolo L., Haskins M., New G2-holonomy cones and exotic nearly Kähler structures on S6 and S3×S3, Ann. of Math., 2017, 185(1):59-130.
[12] Gauduchon P., Hermitian connections and Dirac operator, Boll. Un. Mat. Ital. B, 1997, 11(2):257-288.
[13] Gray A., Minimal varieties and almost Hermitian submanifolds, Michigan Math. J., 1965, 12:273-287.
[14] Gray A., Nearly Kähler manifolds, J. Differential Geometry, 1970, 4:283-309.
[15] Gray A., The structure of nearly Kähler manifolds, Math. Ann., 1976, 223(3):233-248.
[16] Gray A., Hervella L. M., The sixteen classes of almost hermitian manifolds and their linear invariants, Annali di Matematica Pura ed Applicata, 1980, 123(1):35-58.
[17] Hitchin N., Stable Forms and Special Metrics, In:Global Differential Geometry:The Mathematical Legacy of A. Gray, Contemp. Math., 288, 70-89, Amer. Math. Soc., Providence, 2001.
[18] Kobayashi S., Nomizu K., Foundations of Differential Geometry, Vol. II, Interscience Publishers John WileySons, Inc., New York, London, Sydney, 1969.
[19] Kollár J., Mori S., Birational Geometry of Algebraic Varieties, Cambridge Tracts in Mathematics, Vol. 134, Cambridge University Press, Cambridge, 1998.
[20] Li T. J., Symplectic 4-manifolds with Kodaira dimension zero, J. Differential Geom., 2006, 74(2):321-352.
[21] Li T. J., Kodaira Dimension in Low Dimensional Topology, arXiv:1511.04831. MR3971557
[22] Morris D., Nearly Kähler Geometry in Six Dimensions, Ph.D. Thesis, Imperial College London, 2014.
[23] Nagy P. A., Nearly Kähler geometry and Riemannian foliations, Asian J. Math., 2002, 6(3):481-504.
[24] Wolf J. A., Gray A., Homogeneous spaces defined by Lie group automorphisms I, II, J. Diff. Geom., 1968, 2:77-114, 115-159.
[25] Zhang W., Geometric structures, Gromov norm and Kodaira dimensions, Adv. Math., 2017, 308:1-35.
[26] Zheng F., Complex Differential Geometry, AMS/IP Studies in Advanced Mathematics, 18. American Mathematical Society, Providence, RI, International Press, Boston, MA, 2000.

[1]王勇, 吴彤. 推广的韩-刘-张反常消去公式[J]. 数学学报, 2019, 62(5): 721-736.
[2]程新跃, 黄勤荣, 吴莎莎. 对偶平坦(α,β)-度量的共形不变性[J]. 数学学报, 2019, 62(3): 397-408.
[3]李明. Minkowski空间的等价性定理及在Finsler几何的应用[J]. 数学学报, 2019, 62(2): 177-190.
[4]聂昌雄, 于艳梅, 郑立荷. 具有平行的共形第二基本形式的类时超曲面[J]. Acta Mathematica Sinica, English Series, 2015, 58(6): 897-910.
[5]林勇, 满守东. 图上的Li-Yau不等式的一些注记[J]. Acta Mathematica Sinica, English Series, 2015, 58(6): 953-964.
[6]钟定兴, 谢显华, 陈海莲. Rn上具有三个主曲率的Laguerre等参超曲面[J]. Acta Mathematica Sinica, English Series, 2015, 58(2): 195-212.
[7]宗鹏, 肖琳, 刘会立. 三维欧氏空间的仿射乘积曲面[J]. Acta Mathematica Sinica, English Series, 2015, 58(2): 329-336.
[8]江苑珍, 潘恒. 指数型调和映射[J]. Acta Mathematica Sinica, English Series, 2015, 58(1): 131-140.
[9]李方方. Sn+p中Möbius第二基本形式平行的子流形的刚性定理[J]. Acta Mathematica Sinica, English Series, 2014, 57(6): 1081-1088.
[10]韦康. 紧致H-扭广义Calabi-Yau流形中形变的整体典范族[J]. Acta Mathematica Sinica, English Series, 2014, 57(5): 961-972.
[11]钟定兴, 张祖锦, 陶凌阳. Rn中具有平行Laguerre形式的超曲面[J]. Acta Mathematica Sinica, English Series, 2014, 57(5): 851-862.
[12]黄体仁. Carnot 群上严格非正态极值的存在性[J]. Acta Mathematica Sinica, English Series, 2014, 57(4): 745-750.
[13]钟定兴, 孙弘安, 张祖锦. Sn+1上具有三个互异常仿Blaschke特征值的超曲面[J]. Acta Mathematica Sinica, English Series, 2013, 56(5): 751-766.
[14]刘进. 子流形平均曲率向量场的线性相关性[J]. Acta Mathematica Sinica, English Series, 2013, 56(5): 669-686.
[15]陈方维. 几何测度空间基的研究[J]. Acta Mathematica Sinica, English Series, 2013, 56(3): 419-426.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23690
相关话题/数学 空间 结构 浙江师范大学 数学系