摘要本文主要研究了六维近凯勒流形的典范丛和Kodaira维数.证明了六维严格近凯勒流形的典范丛是拟全纯平凡的,从而其Kodaira维数为0.特别地,证明了三维复射影空间CP3具有Kodaira维数不为-∞的近复结构.对于齐性的六维严格近凯勒流形,具体构造了它们典范丛的整体生成元.证明了齐性近凯勒流形F3和CP3的Hodge数h1,0,h2,0,h2,3,h1,3均为零. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2019-11-26 | | 基金资助:国家自然科学基金资助项目(11901530);浙江省自然科学基金资助项目(LY19A010017)
| 作者简介: 陈豪杰,E-mail:chj@zjnu.edu.cn;王冠明,E-mail:310334707@qq.com |
[1] Agricola I., Bazzoni G., Goertsches O., et al., On the history of the Hopf problem, Diff. Geom. Appl., 2018, 57:1-9. [2] Barth W., Hulek K., Peters C., et al., Compact Complex Surfaces, 2nd edn, Springer, Berlin, Heidelberg, 2004. [3] Butruille J. B., Classification des variétés approximativement kähleriennes homogènes, Ann. Global Anal. Geom., 2005, 27(3):201-225. [4] Butruille J. B., Homogeneous Nearly Kähler Manifolds, Handbook of Pseudo-Riemannian Geometry and Supersymmetry, 2010, 399-423. [5] Carrión R., Some Special Geometries Defined by Lie groups, Ph.D. Thesis, Oxford, 1993. [6] Chen H., Zhang W., Kodaira dimensions of almost complex manifolds l, arXiv:1808.00885. [7] Chen H., Zhang W., Kodaira dimensions of almost complex manifolds ll, arXiv:2004.12825. [8] Dorfmeister J. G., Zhang W., The Kodaira dimension of Lefschetz fibrations, Asian J. Math., 2009, 13(3):341-357. [9] Ehresmann C., Libermann P., Sur les structures presque hermitiennes isotropes, C. R. Acad. Sci. Paris, 1951, 232:1281-1283. [10] Friedrich T., Grunewald R., On the first eigenvalue of the Dirac operator on 6-dimensional manifolds, Ann. Global Anal. Geom., 1985, 3:265-273. [11] Foscolo L., Haskins M., New G2-holonomy cones and exotic nearly Kähler structures on S6 and S3×S3, Ann. of Math., 2017, 185(1):59-130. [12] Gauduchon P., Hermitian connections and Dirac operator, Boll. Un. Mat. Ital. B, 1997, 11(2):257-288. [13] Gray A., Minimal varieties and almost Hermitian submanifolds, Michigan Math. J., 1965, 12:273-287. [14] Gray A., Nearly Kähler manifolds, J. Differential Geometry, 1970, 4:283-309. [15] Gray A., The structure of nearly Kähler manifolds, Math. Ann., 1976, 223(3):233-248. [16] Gray A., Hervella L. M., The sixteen classes of almost hermitian manifolds and their linear invariants, Annali di Matematica Pura ed Applicata, 1980, 123(1):35-58. [17] Hitchin N., Stable Forms and Special Metrics, In:Global Differential Geometry:The Mathematical Legacy of A. Gray, Contemp. Math., 288, 70-89, Amer. Math. Soc., Providence, 2001. [18] Kobayashi S., Nomizu K., Foundations of Differential Geometry, Vol. II, Interscience Publishers John WileySons, Inc., New York, London, Sydney, 1969. [19] Kollár J., Mori S., Birational Geometry of Algebraic Varieties, Cambridge Tracts in Mathematics, Vol. 134, Cambridge University Press, Cambridge, 1998. [20] Li T. J., Symplectic 4-manifolds with Kodaira dimension zero, J. Differential Geom., 2006, 74(2):321-352. [21] Li T. J., Kodaira Dimension in Low Dimensional Topology, arXiv:1511.04831. MR3971557 [22] Morris D., Nearly Kähler Geometry in Six Dimensions, Ph.D. Thesis, Imperial College London, 2014. [23] Nagy P. A., Nearly Kähler geometry and Riemannian foliations, Asian J. Math., 2002, 6(3):481-504. [24] Wolf J. A., Gray A., Homogeneous spaces defined by Lie group automorphisms I, II, J. Diff. Geom., 1968, 2:77-114, 115-159. [25] Zhang W., Geometric structures, Gromov norm and Kodaira dimensions, Adv. Math., 2017, 308:1-35. [26] Zheng F., Complex Differential Geometry, AMS/IP Studies in Advanced Mathematics, 18. American Mathematical Society, Providence, RI, International Press, Boston, MA, 2000.
|
[1] | 王勇, 吴彤. 推广的韩-刘-张反常消去公式[J]. 数学学报, 2019, 62(5): 721-736. | [2] | 程新跃, 黄勤荣, 吴莎莎. 对偶平坦(α,β)-度量的共形不变性[J]. 数学学报, 2019, 62(3): 397-408. | [3] | 李明. Minkowski空间的等价性定理及在Finsler几何的应用[J]. 数学学报, 2019, 62(2): 177-190. | [4] | 聂昌雄, 于艳梅, 郑立荷. 具有平行的共形第二基本形式的类时超曲面[J]. Acta Mathematica Sinica, English Series, 2015, 58(6): 897-910. | [5] | 林勇, 满守东. 图上的Li-Yau不等式的一些注记[J]. Acta Mathematica Sinica, English Series, 2015, 58(6): 953-964. | [6] | 钟定兴, 谢显华, 陈海莲. Rn上具有三个主曲率的Laguerre等参超曲面[J]. Acta Mathematica Sinica, English Series, 2015, 58(2): 195-212. | [7] | 宗鹏, 肖琳, 刘会立. 三维欧氏空间的仿射乘积曲面[J]. Acta Mathematica Sinica, English Series, 2015, 58(2): 329-336. | [8] | 江苑珍, 潘恒. 指数型调和映射[J]. Acta Mathematica Sinica, English Series, 2015, 58(1): 131-140. | [9] | 李方方. Sn+p中Möbius第二基本形式平行的子流形的刚性定理[J]. Acta Mathematica Sinica, English Series, 2014, 57(6): 1081-1088. | [10] | 韦康. 紧致H-扭广义Calabi-Yau流形中形变的整体典范族[J]. Acta Mathematica Sinica, English Series, 2014, 57(5): 961-972. | [11] | 钟定兴, 张祖锦, 陶凌阳. Rn中具有平行Laguerre形式的超曲面[J]. Acta Mathematica Sinica, English Series, 2014, 57(5): 851-862. | [12] | 黄体仁. Carnot 群上严格非正态极值的存在性[J]. Acta Mathematica Sinica, English Series, 2014, 57(4): 745-750. | [13] | 钟定兴, 孙弘安, 张祖锦. Sn+1上具有三个互异常仿Blaschke特征值的超曲面[J]. Acta Mathematica Sinica, English Series, 2013, 56(5): 751-766. | [14] | 刘进. 子流形平均曲率向量场的线性相关性[J]. Acta Mathematica Sinica, English Series, 2013, 56(5): 669-686. | [15] | 陈方维. 几何测度空间基的研究[J]. Acta Mathematica Sinica, English Series, 2013, 56(3): 419-426. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23690
加权变指标Herz-Morrey空间上的双线性Hardy算子的交换子王盛荣,徐景实桂林电子科技大学数学与计算科学学院桂林541004CommutatorsofBilinearHardyOperatorsonWeightedHerzMorreySpaceswithVariableExpo ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27加权Bloch空间上复合算子的线性组合张利,楚秀娇南阳师范学院南阳473061LinearCombinationsofCompositionOperatorsonWeightedBlochTypeSpaceLiZHANG,XiuJiaoCHUNanyangNormalUniversity,Nanya ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27bp(2)空间中的等距映射王瑞东,王普天津理工大学理学院天津300384TheIsometryonbp(2)SpaceRuiDongWANG,PuWANGDepartmentofMathematics,TianjinUniversityofTechnology,Tianjin300384,P.R.C ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27带有热记忆的非均匀柔性结构的长时间动力行为冯保伟1,李海燕21西南财经大学经济数学学院成都611130;2北方民族大学数学与信息科学学院银川750021Long-timeDynamicsofaNon-uniformFlexibleStructurewithThermalMemoryBaoWeiFEN ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27改进的Tsirelson空间TM上的Wigner定理熊晓蕾,谭冬妮天津理工大学数学系天津300384Wigner'sTheoremontheModifiedTsirelsonSpaceTMXiaoLeiXIONG,DongNiTANDepartmentofMathematics,TianjinUni ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27正规结构和带参数的约当-冯诺依曼型常数左占飞重庆三峡学院数学与统计学院万州404100TheNormalStructureandParametrizedJordan-vonNeumanntypeConstantZhanFeiZUODepartmentofMathematicsandStatistic ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27非齐型空间上分数型Marcinkiewicz积分算子的加权估计林海波,王宸雁中国农业大学理学院北京100083WeightedEstimatesforFractionalTypeMarcinkiewiczIntegralOperatorsonNon-homogeneousSpacesHaiBoLIN ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27TVS-锥度量空间中的统计收敛林艳芳,鲍玲鑫福建农林大学计算机与信息学院福州350002StatisticalConvergenceinTVS-coneMetricSpacesYanFangLIN,LingXinBAOSchoolofComputerandInformation,FujianAgri ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27广义n-赋范空间中的Vogt定理马玉梅大连民族大学理学院大连116600TheVogtTheoreminG-n-normedSpacesYuMeiMASchoolofScience,DalianMinzuUniversity,Dalian116600,P.R.China摘要图/表参考文献相关文章全文 ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Sobolev空间中非电阻MHD方程局部适定性李亚涛中国工程物理研究院研究生院北京100088LocalWell-posednessfortheNon-resistiveMHDEquationsinSobolevSpacesYaTaoLITheGraduateSchoolofChinaAcademy ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|