删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

四阶脉冲弹性梁方程非平凡弱解的存在数量

本站小编 Free考研考试/2021-12-27

四阶脉冲弹性梁方程非平凡弱解的存在数量 刘健1, 赵增勤2, 于文广31 山东财经大学数学与数量经济学院 济南 250014;
2 曲阜师范大学数学科学学院 曲阜 273165;
3 山东财经大学保险学院 济南 250014 The Numbers of Nontrivial Weak Solutions to Fourth-order Impulsive Elastic Beam Equations Jian LIU1, Zeng Qin ZHAO2, Wen Guang YU31 School of Mathematics and Quantitative Economics, Shandong University of Finance and Economics, Ji'nan 250014, P. R. China;
2 School of Mathematical Sciences, Qufu Normal University, Qufu 273165, P. R. China;
3 School of Insurance, Shandong University of Finance and Economics, Ji'nan 250014, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(414 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究了一类具有脉冲项的四阶弹性梁微分方程边值问题,在非线性项不连续的情况下利用变分方法结合相应的临界点定理得到了非平凡弱解的存在数量,最后给出具体的例子,结合牛顿迭代法来验证所得到的结论.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-11-18
MR (2010):O175.14
基金资助:国家自然科学基金(11571197,11601269);教育部人文社会科学研究项目(16YJC630070);山东省自然科学基金(ZR2017MA048,ZR2018MG002);山东财经大学青年优秀人才支持计划;山东省高等学校优势学科人才团队培育计划(1716009);泰山****工程专项经费(tsqn20161041)
作者简介: 刘健,E-mail:liujianmath@163.com;赵增勤,E-mail:zqzhaoy@163.com;于文广,E-mail:yuwg@sdufe.edu.cn
引用本文:
刘健, 赵增勤, 于文广. 四阶脉冲弹性梁方程非平凡弱解的存在数量[J]. 数学学报, 2021, 64(1): 99-106. Jian LIU, Zeng Qin ZHAO, Wen Guang YU. The Numbers of Nontrivial Weak Solutions to Fourth-order Impulsive Elastic Beam Equations. Acta Mathematica Sinica, Chinese Series, 2021, 64(1): 99-106.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I1/99


[1] Bonanno G., Relations between the mountain pass theorem and local minima, Adv. Nonlinear Anal., 2012, 1:205-220.
[2] Bonanno R., Candito P., Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities, J. Differ. Equations, 2008, 12:3031-3059.
[3] Bonanno G., D'Aguì G., Two Non-Zero Solutions for Elliptic Dirichlet Problems, Anal. Anwend., 2016, 35:449-464.
[4] Bonanno G., Di Bella B., A boundary value problem for fourth-order elastic beam equations, J. Math. Anal. Appl., 2008, 343:1166-1176.
[5] Bonanno G., Iannizzotto A., Marras M., Two positive solutions for superlinear Neumann problems with a complete Sturm-Liouville operator, J. Convex. Anal., 2018, 25:421-34.
[6] Bonanno G., Livrea R., Multiple periodic solutions for Hamiltonian systems with not coercive potential, J. Math. Anal. Appl., 2010, 363:627-638.
[7] D'Aguì G., Sciammetta A., Tornatore E., Two non-zero solutions for Sturm-Liouville equations with mixed boundary conditions, Nonlinear Anal. Real World Appl., 2019, 47:324-331.
[8] Liu J., Yu W., Two solutions to superlinear Hamiltonian systems with impulsive effects, Appl. Math. Lett., 2020, 102:106162.
[9] Liu J., Zhao Z., An application of variational methods to second-order impulsive differential equation with derivative dependence, Electron. J. Differ. Eq., 2014, 2014:1-13.
[10] Liu J., Zhao Z., Existence of classical solutions to impulsive boundary value problems under Cerami condition, Acta Math. Sin., Chin. Ser., 2016, 59:609-622.
[11] Liu J., Zhao Z., Multiple solutions for impulsive problems with non-autonomous perturbations, Appl. Math. Lett., 2017, 64:143-149.
[12] Liu J., Zhao Z., Variational approach to second-order damped Hamiltonian systems with impulsive effects, J. Nonlinear Sci. Appl., 2016, 9:3459-3472.
[13] Liu J., Zhao Z., Yu W., The existence of triple classical solutions to impulsive problems with small nonautonomous perturbations, Acta Math. Sin., Chin. Ser., 2019, 62:441-448.
[14] Liu J., Zhao Z., Zhang T., Multiple solutions to damped Hamiltonian systems with impulsive effects, Appl. Math. Lett., 2019, 91:173-180.
[15] Nieto J., Variational formulation of a damped Dirichlet impulsive problem, Appl. Math. Lett., 2010, 23:940-942.
[16] Nieto J., O'Regan D., Variational approach to impulsive differential equations, Nonlinear Anal., 2009, 10:680-690.
[17] Sun J., Chen H., Nieto J., et al., Multiplicity of solutions for perturbed second-order Hamiltonian systems with impulsive effects, Nonlinear Anal. Real World Appl., 2010, 72:4575-4586.
[18] Sun J., Chen H., Yang L., Variational methods to fourth-order impulsive differential equations, J. Appl. Math. Comput., 2011, 35:323-340.
[19] Xie J., Luo Z., Solutions to a boundary value problem of a fourth-order impulsive differential equation, Bound. Value Probl., 2013, 154:1-18.

[1]廖家锋, 李红英, 张鹏. 四维空间中一类带奇异位势的非局部临界指数问题的正解[J]. 数学学报, 2018, 61(2): 233-242.
[2]沈烈军. 带有临界增长的Kirchhoff型问题的基态解[J]. 数学学报, 2018, 61(2): 197-216.
[3]刘健, 赵增勤. Cerami条件下脉冲边值问题古典解的存在性[J]. 数学学报, 2016, 59(5): 609-622.
[4]丁友征, 徐家发, 韦忠礼. 一个带有脉冲效应的高阶积分边值问题的正解[J]. Acta Mathematica Sinica, English Series, 2014, 57(3): 527-536.
[5]葛斌, 周庆梅. p-Laplacian 算子导出的半变分不等式的特征值问题[J]. Acta Mathematica Sinica, English Series, 2012, (2): 207-218.
[6]林美琳;. 一类带权的非线性椭圆方程正解的存在性问题[J]. Acta Mathematica Sinica, English Series, 2009, (01): 173-182.
[7]冯海星Si Yang Chen. 一类非线性脉冲泛函微分方程解的渐近性[J]. Acta Mathematica Sinica, English Series, 2008, 51(6): 1237-124.
[8]吴述金韩东付还宁. 随机脉冲随机微分方程解的存在唯一性[J]. 数学学报, 2008, 51(6): 1041-105.
[9]马亚军;孙继涛;. 一般时间尺度上时滞脉冲系统的双测度稳定性[J]. Acta Mathematica Sinica, English Series, 2008, 51(4): 755-760.
[10]何智敏;葛渭高. 单调迭代法与一阶脉冲泛函微分方程周期边值问题[J]. Acta Mathematica Sinica, English Series, 2005, 48(1): 171-176.
[11]燕居让. 脉冲时滞抛物型方程解的振动性[J]. Acta Mathematica Sinica, English Series, 2004, 47(3): 579-586.
[12]戚仕硕;王建国. Banach空间二阶脉冲积-微分方程三点边值问题[J]. Acta Mathematica Sinica, English Series, 2003, 46(6): 1189-119.
[13]张小美;钱定边. 具不对称非线性项的二阶常微分方程周期解的存在性[J]. Acta Mathematica Sinica, English Series, 2003, 46(5): 1017-102.
[14]谢胜利;杨志林. Banach空间非线性脉冲Volterra型积分方程和积分-微分方程的可解性[J]. Acta Mathematica Sinica, English Series, 2003, 46(3): 445-452.
[15]张金清. 增算子不动点定理及其对含间断项非线性脉冲方程的应用[J]. Acta Mathematica Sinica, English Series, 2002, 45(6): 1087-109.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23691
相关话题/数学 山东财经大学 空间 曲阜师范大学 人文