删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

有界域上具有部分耗散和磁扩散的二维磁流体方程的全局适定性

本站小编 Free考研考试/2021-12-27

有界域上具有部分耗散和磁扩散的二维磁流体方程的全局适定性 张明玉潍坊学院数学与信息科学学院 潍坊 261061 Global Well-posedness for the 2D MHD System with Partial Dissipation and Magnetic Diffusion in a Bounded Domain Ming Yu ZHANGSchool of Mathematics and Information Sciences, Weifang University, Weifang 261061, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(550 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要探究了具有部分耗散和磁扩散的二维不可压缩磁流体(MHD)方程的初边值问题.在有界区域上,当系统的各个方向上的耗散系数和磁扩散系数都非负时,我们得到了该模型的强解是整体存在且唯一的.此外,对周期域而言,其解仍是全局适定的.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-09-26
MR (2010):O175
O175.2
作者简介: 张明玉,E-mail:mingyumath@126.com
引用本文:
张明玉. 有界域上具有部分耗散和磁扩散的二维磁流体方程的全局适定性[J]. 数学学报, 2021, 64(1): 107-122. Ming Yu ZHANG. Global Well-posedness for the 2D MHD System with Partial Dissipation and Magnetic Diffusion in a Bounded Domain. Acta Mathematica Sinica, Chinese Series, 2021, 64(1): 107-122.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I1/107


[1] Abidi H., Paicu M., Global existence for the magnetohydrodynamic system in critical spaces, Proc. Roy. Soc. Edinburgh Sect A., 2008, 148:447-476.
[2] Bardos C., Sulem C., Sulem P. L., Longtime dynamics of a conductive fluid in the presence of a strong magnetic field, Trans. Amer. Math. Soc., 1988, 305:175-191.
[3] Cao C. S., Wu J. H., Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion, Adv. Math., 2011, 226(2):1803-1822.
[4] Chandrasekhar S., Hydrodynamic and Hydromagnetic Stability, Clarendon, Oxford, 1961.
[5] Chen Q., Tan Z., Wang Y., Strong solutions to the incompressible magnetohydrodynamic equations, Math. Methods Appl. Sci., 2011, 34:94-107.
[6] Desjardins B., Le Bris C., Remarks on a nonhomogeneous model of magnetohydrodynamics, Differential Integral Equations, 1998, 11:377-394.
[7] Duvaut G., Lions J. L., Inéquations en thermoélasticité et magnétohydrodynamique, Arch. Ration. Mech. Anal., 1972, 46:241-279.
[8] Du L. L., Zhou D. Q., Global well-posedness of two-dimensional magnetohydrodynamic flows with partial dissipation and magnetic diffusion, SIAM J. Math. Anal., 2015, 47(2):1562-1589.
[9] Gerbeau J. F., Le Bris C., Existence of solution for a density-dependent magnetohydrodynamic equation, Adv. Differential Equations, 1997, 2:427-452.
[10] Huang X., Wang Y., Global strong solution to the 2D nonhomogeneous incompressible MHD system, J. Differential Equations, 2013, 254:511-527.
[11] Ladyzhenskaya O. A., The Mathematical Theory of Viscous Incompressible Flow, Silverman Gordon and Breach Science Publishers, New York, 1963.
[12] Lei Z., On axially symmetric incompressible magnetohydrodynamics in three dimensions, J. Differential Equations, 2015, 259:3202-3215.
[13] Li X. L., Wang D. H., Global strong solution to the three-dimensional density-dependent incompressible magnetohydrodynamic flows, J. Differential Equations, 2011, 251:1580-1615.
[14] Lin F. H., Xu L., Zhang P., Global small solutions to 2-D incompressible MHD system, J. Differential Equations, 2015, 259:5440-5485.
[15] Ren X. X., Wu J. H., Xiang Z. Y., et al., Global existence and decay of smooth solution for the 2-D MHD equations without magnetic diffusion, J. Funct. Anal., 2014, 267(2):503-541.
[16] Sermange M., Temam R., Some mathematical questions related to the MHD equations, Commun. Pure Appl. Math., 1983, 36:635-64.
[17] Temam R., Navier-Stokes Equations, Theory and Numerical Analysis, AMS, Providence, R. I., 2001.
[18] Xu L., Zhang P., Global small solutions to three-dimensional incompressible magnetohydrodynamical system, SIAM J. Math. Anal., 2015, 47:26-65.
[19] Yu H. B., Global regularity to the 2D incompressible MHD with mixed partial dissipation and magnetic diffusion in a bounded domain, Acta Math. Sci. Ser. B, Engl. Ed., 2017, 37(2):395-404.

[1]叶耀军, 陶祥兴. 一类非线性高阶Kirchhoff型方程的初边值问题[J]. 数学学报, 2019, 62(6): 923-938.
[2]陶双平;陆善镇;. 半直线上修正Kawahara方程的初边值问题[J]. Acta Mathematica Sinica, English Series, 2007, 50(2): 241-254.
[3]崔国忠;江成顺;任华国. 具有吸收-反射边界的Boltzmann-Poisson输运模型的整体弱解[J]. Acta Mathematica Sinica, English Series, 2003, 46(5): 857-864.
[4]刘辉昭;王光烈. 速度依赖于高斯曲率倒数的非参数曲面发展[J]. Acta Mathematica Sinica, English Series, 2002, 45(1): 43-58.
[5]戴求亿. 拟线性抛物方程的熄灭(quenching)现象[J]. Acta Mathematica Sinica, English Series, 1998, 41(1): -.
[6]戴求亿. 拟线性抛物方程的熄灭(quenching[J]. Acta Mathematica Sinica, English Series, 1998, 41(1): 87-96.
[7]顾永耕. 抛物型方程的解熄灭(extinction)的充要条件[J]. Acta Mathematica Sinica, English Series, 1994, 37(1): -.
[8]谢胜利. 含无限时滞的混合型偏泛函微分方程初边值问题解的稳定性[J]. Acta Mathematica Sinica, English Series, 1993, 36(6): 778-787.
[9]何猛省. 时滞方程解的有界性和渐近性[J]. Acta Mathematica Sinica, English Series, 1991, 34(6): 785-792.
[10]尹景学. 非线性扩散方程广义解的有限传播速度性质[J]. Acta Mathematica Sinica, English Series, 1991, 34(3): 360-364.
[11]顾永耕;吴在德. 一类非线性抛物型方程整体解的存在性和衰减估计[J]. Acta Mathematica Sinica, English Series, 1989, 32(4): 535-550.
[12]王元明;陈才生. 拟线性退化抛物型方程组的整体解和渐近性态[J]. Acta Mathematica Sinica, English Series, 1989, 32(3): 411-422.
[13]辛周平. 反应扩散方程Fife引理的一点注记及其应用[J]. Acta Mathematica Sinica, English Series, 1988, 31(2): 221-227.
[14]刘亚成;刘大成. 三维广义神经传播型非线性拟双曲方程(组)的整体强解[J]. Acta Mathematica Sinica, English Series, 1987, 30(4): 536-547.
[15]林正国. 拟线性正对称组具特征的边值问题[J]. Acta Mathematica Sinica, English Series, 1984, 27(6): 830-833.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23692
相关话题/数学 神经 数学与信息科学学院 系统 传播