摘要探究了具有部分耗散和磁扩散的二维不可压缩磁流体(MHD)方程的初边值问题.在有界区域上,当系统的各个方向上的耗散系数和磁扩散系数都非负时,我们得到了该模型的强解是整体存在且唯一的.此外,对周期域而言,其解仍是全局适定的. |
[1] Abidi H., Paicu M., Global existence for the magnetohydrodynamic system in critical spaces, Proc. Roy. Soc. Edinburgh Sect A., 2008, 148:447-476. [2] Bardos C., Sulem C., Sulem P. L., Longtime dynamics of a conductive fluid in the presence of a strong magnetic field, Trans. Amer. Math. Soc., 1988, 305:175-191. [3] Cao C. S., Wu J. H., Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion, Adv. Math., 2011, 226(2):1803-1822. [4] Chandrasekhar S., Hydrodynamic and Hydromagnetic Stability, Clarendon, Oxford, 1961. [5] Chen Q., Tan Z., Wang Y., Strong solutions to the incompressible magnetohydrodynamic equations, Math. Methods Appl. Sci., 2011, 34:94-107. [6] Desjardins B., Le Bris C., Remarks on a nonhomogeneous model of magnetohydrodynamics, Differential Integral Equations, 1998, 11:377-394. [7] Duvaut G., Lions J. L., Inéquations en thermoélasticité et magnétohydrodynamique, Arch. Ration. Mech. Anal., 1972, 46:241-279. [8] Du L. L., Zhou D. Q., Global well-posedness of two-dimensional magnetohydrodynamic flows with partial dissipation and magnetic diffusion, SIAM J. Math. Anal., 2015, 47(2):1562-1589. [9] Gerbeau J. F., Le Bris C., Existence of solution for a density-dependent magnetohydrodynamic equation, Adv. Differential Equations, 1997, 2:427-452. [10] Huang X., Wang Y., Global strong solution to the 2D nonhomogeneous incompressible MHD system, J. Differential Equations, 2013, 254:511-527. [11] Ladyzhenskaya O. A., The Mathematical Theory of Viscous Incompressible Flow, Silverman Gordon and Breach Science Publishers, New York, 1963. [12] Lei Z., On axially symmetric incompressible magnetohydrodynamics in three dimensions, J. Differential Equations, 2015, 259:3202-3215. [13] Li X. L., Wang D. H., Global strong solution to the three-dimensional density-dependent incompressible magnetohydrodynamic flows, J. Differential Equations, 2011, 251:1580-1615. [14] Lin F. H., Xu L., Zhang P., Global small solutions to 2-D incompressible MHD system, J. Differential Equations, 2015, 259:5440-5485. [15] Ren X. X., Wu J. H., Xiang Z. Y., et al., Global existence and decay of smooth solution for the 2-D MHD equations without magnetic diffusion, J. Funct. Anal., 2014, 267(2):503-541. [16] Sermange M., Temam R., Some mathematical questions related to the MHD equations, Commun. Pure Appl. Math., 1983, 36:635-64. [17] Temam R., Navier-Stokes Equations, Theory and Numerical Analysis, AMS, Providence, R. I., 2001. [18] Xu L., Zhang P., Global small solutions to three-dimensional incompressible magnetohydrodynamical system, SIAM J. Math. Anal., 2015, 47:26-65. [19] Yu H. B., Global regularity to the 2D incompressible MHD with mixed partial dissipation and magnetic diffusion in a bounded domain, Acta Math. Sci. Ser. B, Engl. Ed., 2017, 37(2):395-404.
|
[1] | 叶耀军, 陶祥兴. 一类非线性高阶Kirchhoff型方程的初边值问题[J]. 数学学报, 2019, 62(6): 923-938. | [2] | 陶双平;陆善镇;. 半直线上修正Kawahara方程的初边值问题[J]. Acta Mathematica Sinica, English Series, 2007, 50(2): 241-254. | [3] | 崔国忠;江成顺;任华国. 具有吸收-反射边界的Boltzmann-Poisson输运模型的整体弱解[J]. Acta Mathematica Sinica, English Series, 2003, 46(5): 857-864. | [4] | 刘辉昭;王光烈. 速度依赖于高斯曲率倒数的非参数曲面发展[J]. Acta Mathematica Sinica, English Series, 2002, 45(1): 43-58. | [5] | 戴求亿. 拟线性抛物方程的熄灭(quenching)现象[J]. Acta Mathematica Sinica, English Series, 1998, 41(1): -. | [6] | 戴求亿. 拟线性抛物方程的熄灭(quenching[J]. Acta Mathematica Sinica, English Series, 1998, 41(1): 87-96. | [7] | 顾永耕. 抛物型方程的解熄灭(extinction)的充要条件[J]. Acta Mathematica Sinica, English Series, 1994, 37(1): -. | [8] | 谢胜利. 含无限时滞的混合型偏泛函微分方程初边值问题解的稳定性[J]. Acta Mathematica Sinica, English Series, 1993, 36(6): 778-787. | [9] | 何猛省. 时滞方程解的有界性和渐近性[J]. Acta Mathematica Sinica, English Series, 1991, 34(6): 785-792. | [10] | 尹景学. 非线性扩散方程广义解的有限传播速度性质[J]. Acta Mathematica Sinica, English Series, 1991, 34(3): 360-364. | [11] | 顾永耕;吴在德. 一类非线性抛物型方程整体解的存在性和衰减估计[J]. Acta Mathematica Sinica, English Series, 1989, 32(4): 535-550. | [12] | 王元明;陈才生. 拟线性退化抛物型方程组的整体解和渐近性态[J]. Acta Mathematica Sinica, English Series, 1989, 32(3): 411-422. | [13] | 辛周平. 反应扩散方程Fife引理的一点注记及其应用[J]. Acta Mathematica Sinica, English Series, 1988, 31(2): 221-227. | [14] | 刘亚成;刘大成. 三维广义神经传播型非线性拟双曲方程(组)的整体强解[J]. Acta Mathematica Sinica, English Series, 1987, 30(4): 536-547. | [15] | 林正国. 拟线性正对称组具特征的边值问题[J]. Acta Mathematica Sinica, English Series, 1984, 27(6): 830-833. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23692
Zalcman引理在随机迭代函数族动力系统中的应用黄小杰1,2,刘芝秀11南昌工程学院理学院江西330099;2复旦大学计算机科学技术学院上海200433AnApplicationofZalcmanLemmainDynamicalSystemsofRandomIteratedFunctionFami ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27伪自伴量子系统的酉演化与绝热定理黄永峰1,2,曹怀信1,王文华31陕西师范大学数学与信息科学学院西安710119;2昌吉学院数学系昌吉831100;3陕西师范大学民族教育学院西安710119UnitaryEvolutionandAdiabaticTheoremofPseudoSelf-adjoint ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一类次线性弱耦合系统无穷多个周期解的存在性王超盐城师范学院数学与统计学院盐城224002TheExistenceofInfinitePeriodicSolutionsofaClassofSub-linearSystemswithWeakCouplingChaoWANGSchoolofMathemat ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27无症状病人对传染病传播影响的模型研究刘彬彬,于辛雅,齐龙兴安徽大学数学科学学院,合肥230601ModelStudyontheEffectofAsymptomaticPatientsontheSpreadofInfectiousDiseasesLIUBinbin,YUXinya,QILongxing ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27具年龄结构和非局部扩散的三种群Lotka-Volterra竞争合作系统行波解稳定性张丽娟,霍振香,任晴晴,王福昌防灾科技学院,廊坊065201StabilityoftheTravelingWaveSolutionsforThreeSpeciesLotka-VolterraCompetitive-co ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27带有非紧条件的拟线性Schrdinger-Poisson系统非平凡解的存在性陈丽珍1,冯晓晶2,李刚31.山西财经大学应用数学学院,太原,030006;2.山西大学数学科学学院,太原,030006;3.扬州大学数学科学学院,扬州,225002TheExistenceofNontrivia ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27双参数奇摄动非线性抛物型系统的广义尖层解冯依虎1,2,侯磊2,莫嘉琪31.亳州学院电子与信息工程系,亳州236800;2.上海大学数学系,上海200436;3.安徽师范大学数学与统计学院,芜湖241003TheGeneralizedSpikeLayerSolutiontoSingularPertur ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27时标上二阶拟线性延迟阻尼动态系统的动力学行为分析李继猛1,杨甲山21.邵阳学院理学院,邵阳422004;2.梧州学院大数据与软件工程学院,梧州543002DynamicalBehaviorofSecond-orderQuasilinearDelayDampedDynamicEquationsonTi ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一类具有多重时滞的分数阶中立型微分系统的相对可控性杨礼昌,蒋威,盛家乐,刘婷婷,MusarrtNawaz安徽大学数学科学学院,合肥230601RelativeControllabilityofFractionalNeutralSystemwithMultipleDelaysYANGLichang,J ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27分数阶线性退化微分系统有限时间镇定性问题王盼盼,张志信,蒋威安徽大学数学科学学院,合肥230601Finite-timeStabilizabilityofFractionalLinearSingularDifferentialSystemWANGPanpan,ZHANGZhixin,JIANGWei ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|