删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一种非单调滤子信赖域算法解线性不等式约束优化

本站小编 Free考研考试/2021-12-27

一种非单调滤子信赖域算法解线性不等式约束优化 王珏钰1, 顾超1, 朱德通21 上海立信会计金融学院统计与数学学院 上海 201209;
2 上海师范大学数学系 上海 200234 A Nonmonotone Filter-trust-region Algorithm for Linear Inequality Constrained Optimization Jue Yu WANG1, Chao GU1, De Tong ZHU21 School of Statistics and Mathematics, Shanghai Lixin University of Accounting and Finance, Shanghai 201209, P. R. China;
2 Department of Mathematics, Shanghai Normal University, Shanghai 200234, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(748 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文给出了一种新的多维滤子算法结合非单调信赖域策略解线性约束优化.目标函数及其投影梯度的分量组成了新的多维滤子,并且与信赖域半径有关.当信赖域半径充分小时,新的滤子能接受试探点,避免算法无限循环.非单调信赖域策略保证了新算法的整体收敛性.目前为止,多维滤子算法局部收敛性分析仍然没有解决,在合理假设下,我们分析了新算法的局部超线性收敛性.数值结果验证了算法的有效性.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-09-14
MR (2010):O221.2
基金资助:国家自然科学基金资助项目(11971302);上海立信会计金融学院序伦****培养计划
通讯作者:顾超E-mail: guchao@lixin.edu.cn
作者简介: 王珏钰,E-mail:shnu201005@hotmail.com;朱德通,E-mail:dtzhu@shnu.edu.cn
引用本文:
王珏钰, 顾超, 朱德通. 一种非单调滤子信赖域算法解线性不等式约束优化[J]. 数学学报, 2020, 63(6): 601-620. Jue Yu WANG, Chao GU, De Tong ZHU. A Nonmonotone Filter-trust-region Algorithm for Linear Inequality Constrained Optimization. Acta Mathematica Sinica, Chinese Series, 2020, 63(6): 601-620.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2020/V63/I6/601


[1] Andrei N., An unconstrained optimization test functions collection, Adv. Model. Optim., 2008, 10:147-161.
[2] Bai Y. Q., Wang G. Q., Primal-dual interior-point algorithms for second-order cone optimization based on a new parametric kernel function, Acta Mathematica Sinica, English Series, 2007, 23:2027-2042.
[3] Bai Y. Q., Guo J. L., Roos C., A new kernel function yielding the best known iteration bounds for primal-dual interior-point algorithms, Acta Mathematica Sinica, English Series, 2009, 25:2169-2178.
[4] Chen Y., Sun W., A dwindling filter line search method for unconstrained optimization, Math. Comput., 2015, 84:187-208.
[5] Coleman T. F., Li Y., A trust region and affine scaling interior point method for nonconvex minimization with linear inequality constraints, Math. Program. Ser. A, 2000, 88:1-31.
[6] Conn A. R., Gould N. I. M., Toint Ph. L., Trust Region Methods, MPS/SIAM Ser. Optim. 1, SIAM, Philadelphia, 2000.
[7] Dolan E. D., Moré J. J., Benchmarking optimization software with performance profiles, Math. Program., 2002, 91:201-213.
[8] Fatemi M., Mahdavi-Amiri N., A filter trust-region algorithm for unconstrained optimization with strong global convergence properties, Comput. Optim. Appl., 2012, 52:239-266.
[9] Fletcher R., Leyffer S., Nonlinear programming without a penalty function, Math. Program., 2002, 91:239-269.
[10] Gould N. I. M., Toint Ph. L., Sainvitu C., A filter-trust-region method for unconstrained optimization, SIAM J. Optim., 2005, 16:341-357.
[11] Gould N. I. M., Leyffer S., Toint Ph. L., A multidimensional filter algorithm for nonlinear equations and nonlinear least-squares, SIAM J. Optim., 2004, 15:17-38.
[12] Gould N. I. M., Orban D., Toint Ph. L., CUTEr, a constrained and unconstrained testing environment, revisited, ACM Trans. Math. Softw., 2003, 29:373-394.
[13] Grippo L., Lampariello F., Ludidi S., A nonmonotone line search technique for Newton's method, SIAM J. Numer. Anal., 1986, 23:707-716.
[14] Gu R., Yuan Y. X., A partial first-order affine-scaling method, Acta Mathematica Sinica, English Series, 2019, 35:1-16.
[15] Gu C., Zhu D., Convergence of a three-dimensional dwindling filter algorithm without feasibility restoration phase, Numerical Functional Analysis and Optimization, 2016, 37:324-341.
[16] Su K., Liu Y., A modified filter trust region method for nonlinear programming, Acta Mathematica Sinica, Chinese Series, 2009, 52:1157-1164.
[17] Yuan G. L., Wei Z. X., The superlinear convergence analysis of a nonmonotone BFGS algorithm on convex objective functions, Acta Mathematica Sinica, English Series, 2008, 4:35-42.
[18] Zhu D., A new affine scaling interior point algorithm for nonlinear optimization subject to linear equality and inequality constraints, J. Comput. Appl. Math., 2003, 161:1-25.
[19] Zhu D., Superlinearly convergent affine scaling interior trust-region method for linear constrained LC1 minimization, Acta Mathematica Sinica, English Series, 2008, 24:2081-2100.
[20] Zhu Z. B., Jian J. B., An improved feasible QP-free algorithm for inequality constrained optimization, Acta Mathematica Sinica, English Series, 2012, 28:2475-2488.

[1]陈月姣, 张明望. 基于核函数求解 LCPs的全-Newton步不可行内点算法[J]. Acta Mathematica Sinica, English Series, 2014, 57(6): 1047-1060.
[2]江羡珍, 简金宝, 马国栋. 具有充分下降性的两个共轭梯度法[J]. Acta Mathematica Sinica, English Series, 2014, 57(2): 365-372.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23669
相关话题/优化 上海立信会计金融学院 上海 数学 统计