删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

集值优化问题的E-强有效解

本站小编 Free考研考试/2021-12-27

集值优化问题的E-强有效解 周志昂, 刘爽重庆理工大学理学院, 重庆 400054 E-Strong Efficiency of Set-Valued Optimization Problems ZHOU Zhiang, Liu ShuangCollege of Sciences, Chongqing University of Technology, Chongqing 400054, China
摘要
图/表
参考文献
相关文章(13)
点击分布统计
下载分布统计
-->

全文: PDF(358 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文主要研究了集值优化问题的E-强有效解.首先,基于改进集的概念,在实局部凸空间中引进了集合的E-强有效点,讨论了它与其它真有效点的关系.其次,在集值映射为邻近E-次似凸的条件下,建立了集值优化问题E-强有效解的标量化定理和Lagrange乘子定理.最后,获得了集值优化问题的E-强鞍点定理.这篇文章的结果统一和推广了一些文献中的已知结果.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-08-26
PACS:O221.6
基金资助:国家自然科学基金(11971084,11861002),重庆市教委科学技术研究项目(KJZD-K202001104)资助.

引用本文:
周志昂, 刘爽. 集值优化问题的E-强有效解[J]. 应用数学学报, 2020, 43(5): 882-896. ZHOU Zhiang, Liu Shuang. E-Strong Efficiency of Set-Valued Optimization Problems. Acta Mathematicae Applicatae Sinica, 2020, 43(5): 882-896.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2020/V43/I5/882


[1] Li Z F. Benson proper efficiency in the vector optimization of set-valued maps. Journal of Optimization Theory and Applications, 1998, 98(3):623-649
[2] Rong W D, Wu Y N. Characterizations of super efficiency in cone-convexlike vector optimization with set-valued maps. Mathematical Methods of Operations Research, 1998, 48(2):247-258
[3] Yang X M, Yang X Q, Chen G Y. Theorems of the alternative and optimization with set-valued maps. Journal of Optimization Theory and Applications, 2000, 107(3):627-640
[4] 仇秋生. 关于Henig真有效性. 系统科学与数学, 2011, 31(4):482-488(Qiu Q S. On Henig proper efficiency. Journal of System Science and Mathematical Science, 2011, 31(4):482-488)
[5] Rong W D, Wu Y N. varepsilon-weak minimal solutions of vector optimization problems with set-valued maps. Journal of Optimization Theory and Applications, 2000, 106(3):569-579
[6] Tuan L A. varepsilon-optimality conditions for vector optimization problems with set-valued maps. Numerical Functional Analysis and Optimization, 2010, 31(1):78-95
[7] Li T Y, Xu Y H, Zhu C X. varepsilon-strictly efficient solutions of vector optimization problems with set-valued maps. Asia-pacific Journal of Operational Research, 2007, 24(6):841-854
[8] Zhou Z A, Yang X M. Scalarization of varepsilon-super efficient solutions of set-valued optimization problems in real ordered linear spaces. Journal of Optimization Theory and Applications, 2014, 162(2):680-693
[9] Zhou Z A, Yang X M, Peng J W. varepsilon-Henig proper efficiency of set-valued optimization problems in real ordered linear spaces. Optimization Letters, 2014, 8(6):1813-1827
[10] Zhou Z A, Yang X M, Chen W. varepsilon-strong efficiency of a set and its applications in ordered linear spaces. Pacific Journal of Optimization, Accepted.
[11] Chicco M, Mignanego F, Pusillo L, Tijs S. Vector optimization problems via improvement sets. Journal of Optimization Theory and Applications, 2011, 150(3):516-529
[12] Gutiérrez C, Jiménez B, Novo V. Improvement sets and vector optimization. European Journal of Operational Research, 2012, 223(2):304-311
[13] Zhao K Q, Yang X M. E-Benson proper efficiency in vector optimization. Optimization, 2015, 64(4):739-752
[14] Zhou Z A, Yang X M, Zhao K Q. E-super efficiency of set-valued optimization problems involving improvement sets. Journal of Industrial and Management Optimization, 2016, 12(3):1031-1039
[15] Yang X M, Li D, Wang S Y. Near-subconvexlikeness in vector optimization with set-valued functions. Journal of Optimization Theory and Applications, 2001, 110(2):413-427
[16] Lin L J. Optimization of set-valued functions. Journal of Mathematical Analysis and Applications, 2011, 186(1):30-51
[17] Zhao K Q, Yang X M, Peng J W. Weak ssize E-optimal solution in vector optimization. Taiwanese Journal of Mathematics, 2013, 17(4):1287-1302
[18] Cheng Y H, Fu W T. Strong efficiency in a locally convex space. Mathematical Methods of Operations Research, 1999, 50(3):373-384
[19] 武育楠, 戎卫东. 集值映射向量优化问题的强有效性. 内蒙古大学学报(自然版), 1999, 30(4):415-421(Wu Y N, Rong W D. Strong efficiency in vector Optimization problems with set-valued maps. Journal of Inner Mongolia University (Natural Science Edition), 1999, 30(4):415-421)
[20] Chen G Y, Rong W D. Characterizations of the Benson proper efficiency for nonconvex vector optimization. Journal of Optimization Theory and Applications, 1998, 98(2):365-384
[21] 赵克全. 向量优化问题解的性质研究, 上海大学, 2013(Zhao K Q. Study on Characterizations of Solutions in Vector Optimization Problems, Shanghai University, 2013)

[1]吴唯钿, 仇秋生, 田伟福. 非凸集值优化问题E-Benson真有效元的最优性条件[J]. 应用数学学报, 2018, 41(5): 620-631.
[2]俞建, 彭定涛. 大多数单调变分不等式具有唯一解[J]. 应用数学学报, 2017, 40(4): 481-488.
[3]向丽. 集值优化问题的非线性增广拉格朗日方法[J]. 应用数学学报, 2017, 40(4): 497-508.
[4]徐义红, 彭振华. 一种新的二阶次梯度及其在刻画集值优化弱有效元中的应用[J]. 应用数学学报, 2017, 40(2): 204-217.
[5]仇秋生, 王定畅, 张莹. 集值优化问题近似Henig有效解集的连通性[J]. 应用数学学报, 2017, 40(1): 149-160.
[6]韩有攀, 李文敏, 李乃成. 集值优化问题Henig真有效解的最优性条件[J]. 应用数学学报(英文版), 2014, 37(1): 13-21.
[7]傅俊义, 王三华. 集值映射的对称向量拟均衡问题[J]. 应用数学学报(英文版), 2011, 34(1): 40-49.
[8]余国林, 刘三阳. 集值优化全局真有效解的最优性条件[J]. 应用数学学报(英文版), 2010, 33(1): 150-160.
[9]王明征, 夏尊铨. 带有广义次类凸型集值映射的集值优化中的数乘与ε-对偶[J]. 应用数学学报(英文版), 2004, 27(4): 632-637.
[10]徐义红, 刘三阳. $(h,\varphi)$不变广义凸函数的若干性质与$(h,\varphi)$不变广义凸多目标规划的最优性及对偶性[J]. 应用数学学报(英文版), 2003, 26(4): 726-736.
[11]刘三阳, 盛宝怀. 非凸向量集值优化Benson真有效解的最优性条件与对偶[J]. 应用数学学报(英文版), 2003, 26(2): 337-344.
[12]盛宝怀, 刘三阳. 用广义梯度刻画集值优化Benson真有效解[J]. 应用数学学报(英文版), 2002, 25(1): 22-27.
[13]李仲飞. 集值映射向量优化的Benson真有效性[J]. 应用数学学报(英文版), 1998, 21(1): 0-0.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14826
相关话题/优化 应用数学 统计 学报 内蒙古大学