删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Tyson型集及Borel函数的图的拟对称极小性

本站小编 Free考研考试/2021-12-27

Tyson型集及Borel函数的图的拟对称极小性 党云贵1,2, 文胜友11 湖北大学数学与统计学学院应用数学湖北省重点实验室 武汉 430062;
2 吕梁学院数学系 吕梁 033000 Quasisymmetric Minimality of Sets of Tyson Type and Graphs of Borel Functions Yun Gui DANG1,2, Sheng You WEN11 Faculty of Mathematics and Statistics, Hubei University, Hubei Key Laboratory of Applied Mathematics, Wuhan 430062, P. R. China;
2 Department of Mathematics, Lüliang University, Lüliang 033000, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(430 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文将欧氏空间Rd中形如[0,1]×Z的集称为Tyson型集,其中d>1,Z⊂Rd-1.已知当Z是Rd-1中的紧集时,Tyson型集是拟对称极小集.本文改进了这个结果,证明了当Z是Rd-1中的Borel集时,Tyson型集仍是拟对称极小集.作为应用,我们证明了Tyson型集三个形变版本的拟对称极小性,其中一个结果是:设Z是Rd-1中的任一Borel集,hZ→R1是Borel函数,满足dimH({h≠0}∩Z)=dimH Z,则h的图Gh)是拟对称极小集,其中h的图Gh)定义为Gh)={(z,y):zZy∈[0,hz)]}.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-09-28
MR (2010):O174.12
基金资助:国家自然科学基金资助项目(11871200,11671189);山西省高等学校科技创新项目(2019L0963)
作者简介: 党云贵,E-mail:563049383@qq.com;文胜友,E-mail:sywen_65@163.com
引用本文:
党云贵, 文胜友. Tyson型集及Borel函数的图的拟对称极小性[J]. 数学学报, 2020, 63(6): 621-628. Yun Gui DANG, Sheng You WEN. Quasisymmetric Minimality of Sets of Tyson Type and Graphs of Borel Functions. Acta Mathematica Sinica, Chinese Series, 2020, 63(6): 621-628.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2020/V63/I6/621


[1] Beurling A., Ahlfors L., The boundary correspondence under quasiconformal mappings, Acta Math., 1956, 96:125-142.
[2] Bishop C. J., Tyson J. T., Locally minimal sets for conformal dimension, Ann. Acad. Sci. Fenn. Math., 2001, 26:361-373.
[3] Falconer K. J., Fractal Geometry:Mathematical Foundations and Applications, John Wiley, New Jersey, 1990.
[4] Gehring F. W., Väisälä J., Hausdorff dimension and quasiconformal mappings, J. London. Math. Soc., 1973, 6(2):504-512.
[5] Hakobyan H., Cantor sets which are minimal for quasisymmetric maps, J. Contemp. Math. Anal., 2006, 41(2):5-13.
[6] Heinonen J., Lectures on Analysis on Metric Spaces, Springer-Verlag, New York, 2001.
[7] Hu M. D., Wen S. Y., Quasisymmetrically minimal uniform Cantor sets, Topol. Appl., 2008, 155(6):515-521.
[8] Kovalev L. V., Conformal dimension does not assume values between 0 and 1, Duke. Math. J., 2006, 134(1):1-13.
[9] Mackay J. M., Tyson J. T., Conformal Dimension:Theory and Application, American Mathematical Society, Rhode Island, 2010.
[10] Mañé R., Sad P., Sullivan D., On the dynamics of rational maps, Ann. Sci. École. Norm. Sup., 1983, 16:193-217.
[11] Pansu P., Dimension conforme et sphère à l'infini des variétés à courbure négative, Ann. Acad. Sci. Fenn. Ser. Math., 1989, 14:177-212.
[12] Tukia P., Hausdorff dimension and quasisymmetric mappings, Math. Scand., 1989, 65(1):152-160.
[13] Tukia P., Väisälä J., Quasisymmetric embeddings of metric spaces, Ann. Acad. Sci. Fenn. Ser. Math., 1980, 5:97-114.
[14] Tyson J. T., Sets of minimal Hausdorff dimension for quasiconformal maps, Proc. Amer. Math. Soc., 2000, 128(11):3361-3367.
[15] Väisälä J., Bi-Lipschitz and quasisymmetric extension properties, Ann. Acad. Sci. Fenn. Ser. Math., 1986, 11(2):239-274.
[16] Väisälä J., Quasisymmetry and unions, Manuscripta Math., 1990, 68:101-111.

[1]肖映青, 张展旗. 齐次完全集的拟对称极小性[J]. 数学学报, 2019, 62(4): 573-590.
[2]梁永顺. 具有无界变差的连续函数研究进展[J]. 数学学报, 2016, 59(2): 215-232.
[3]刘春苔. 向量值系数Rademacher级数及其水平集[J]. Acta Mathematica Sinica, English Series, 2015, 58(5): 705-716.
[4]肖映青. 拟对称极小的齐次完全集[J]. Acta Mathematica Sinica, English Series, 2013, 56(4): 527-536.
[5]刘春苔. Rademacher级数水平集的Hausdorff维数[J]. Acta Mathematica Sinica, English Series, 2012, 55(6): 1013-1018.
[6]张瑞凤, 寇汴闽. 非线性光学中薛定谔型方程的整体吸引子[J]. Acta Mathematica Sinica, English Series, 2012, 55(1): 17-26.
[7]武志容, 叶远灵. 弱分离条件下的自共形迭代函数系统[J]. Acta Mathematica Sinica, English Series, 2011, 54(6): 881-892.
[8]张爱华, 陈二才. 允许揉搓序列在乘积度量下的维数和测度[J]. Acta Mathematica Sinica, English Series, 2009, 52(6): 1207-1210.
[9]王立娟;. 3阶非单谷Feigenbaum映射的拟极限集[J]. Acta Mathematica Sinica, English Series, 2007, 50(3): 577-582.
[10]陈光淦;蒲志林;张健;. 非自治Schrdinger-KdV型藕合方程组的一致吸引子及其维数估计[J]. Acta Mathematica Sinica, English Series, 2006, 49(6): 1303-131.
[11]庄伟. Julia集及其Hausdorff维数的连续性[J]. Acta Mathematica Sinica, English Series, 2004, 47(6): 1161-116.
[12]贾保国;周作领;朱智伟. 三分Cantor集自乘积的Hausdorff测度的估计[J]. Acta Mathematica Sinica, English Series, 2003, 46(4): 747-752.
[13]胥晖. 保形图递归集的Hausdorff维数和测度[J]. Acta Mathematica Sinica, English Series, 2001, 44(4): 633-640.
[14]龙伦海. 由表示系统生成的分形的维数[J]. Acta Mathematica Sinica, English Series, 2001, 44(4): 627-632.
[15]瞿成勤;苏维宜;许勇. R~d中齐次Moran集的Hausdorff维数[J]. Acta Mathematica Sinica, English Series, 1999, 42(6): 0-0+0.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23670
相关话题/数学 系统 湖北大学 数学与统计学学院 应用数学