删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

相对于子范畴的同伦分解的存在性

本站小编 Free考研考试/2021-12-27

相对于子范畴的同伦分解的存在性 马鑫1, 杨晓燕21 甘肃农业大学数量生物学研究中心 兰州 730070;
2 西北师范大学数学与统计学院 兰州 730070 The Existence of Homotopy Resolutions Relative to the Subcategory Xin MA1, Xiao Yan YANG21 Center for Quantitative Biology, College of Science, Gansu Agricultural University, Lanzhou 730070, P. R. China;
2 Department of Mathematics, Northwest Normal University, Lanzhou 730070, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(547 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文证明了在相对于子范畴的情形下上有界复形的同伦分解的存在性,推广了经典的复形的同伦分解,是使得相对导出范畴具有可操作性的基础.进一步,证明了在R-模范畴和相对于特殊子范畴的情形下,任意无界复形的同伦分解的存在性.最后,建立了同伦范畴和相对导出范畴的(余)局部化序列.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-08-13
MR (2010):O154.2
基金资助:国家自然科学基金资助项目(11761060);甘肃省高等学校科研项目(2018B-036)
作者简介: 马鑫,E-mail:maxin263@126.com;杨晓燕,E-mail:yangxy@nwnu.edu.cn
引用本文:
马鑫, 杨晓燕. 相对于子范畴的同伦分解的存在性[J]. 数学学报, 2020, 63(1): 77-88. Xin MA, Xiao Yan YANG. The Existence of Homotopy Resolutions Relative to the Subcategory. Acta Mathematica Sinica, Chinese Series, 2020, 63(1): 77-88.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2020/V63/I1/77


[1] Asadollahi J., Hafezi R., Gorenstein derived equivalences and their invariants, J. Pure Appl. Algebra, 2014, 218:888-903.
[2] Asadollahi J., Hafezi R., On relative derived categories, http://arxiv.org/abs/1311.2189.
[3] Beligiannis A., The homological theory of contravariantly finite subcategories:Auslander-Buchweitz contexts, Gorenstein categories and (co)stabilization, Comm. Algebra, 2000, 28:4547-4596.
[4] Bravo D., Gillespie J., Hovey M., The stable module category of a general ring, http://arxiv.org/abs/1405.5768.
[5] Chen X. W., Homotopy equivalences induced by balanced pairs, J. Algebra, 2010, 324:2718-2731.
[6] Enochs E. E., Jenda O. M. G., Relative Homological Algebra, Springer-Verlag, New York, 2000.
[7] Enochs E. E., López-ramos J. A., Kaplanksy classes, Rend. Sem. Mat. Univ. Padova, 2002, 107:67-79.
[8] Gao N., Stable t-structures and homotopy category of Gorenstein-projective modules, J. Algebra, 2010, 324:2503-2011.
[9] Gao N., Zhang P., Gorenstein derived categories, J. Algebra, 2010, 323:2041-2057.
[10] Gillespie J., Model structures on modules over Ding-chen rings, Homology, Homo. Appl., 2010, 12:61-73.
[11] Hoshino M., Derived categories, www.u-gakugei.ac.jp/miyachi/papers/DC1.pdf.
[12] Keller B., Derived categories and their uses, In:Handbook of Algebra Vol. 1, Elsevier, 1996.
[13] Miyach J., Localization of triangulated categories and derived categories, J. Algebra, 1991, 141:463-483.
[14] Murfet D., Dereived categories part I, http://www.therisingsea.org/notes/DerivedCategories.pdf.
[15] Parshall B., Scott L. L., Derived Categories, Quasi-hereditary Algebras and Algebraic Grooups, Proceedings of the Ottawa-Moosonee Workshop in Algebra, 1987.
[16] Ren W., Liu Z. K., Yang G., Derived categories with respect to Ding modules, J. Algebra Appl., 2013, 12.
[17] Spaltenstein N., Resolutions of unbounded complexes, Compositio Math., 1988, 65:121-154.
[18] Verdier J. L., Des Catégories Dérivées des Catégories Abéliennes, Astrisque 239, Societ Mathematique de France, Pairs, 1996.
[19] Zhang P., Triangulated Categories and Derived Categories, Beijing, 2015.
[20] Zheng Y. F., Huang Z. Y., On pure derived categories, J. Algebra, 2016, 454:252-272.

[1]曹天涯, 刘仲奎, 杨晓燕. 纯奇点范畴中的Buchweitz定理[J]. 数学学报, 2019, 62(4): 553-560.
[2]梁力, 杨刚. 复形的#-内射包络的存在性[J]. 数学学报, 2019, 62(3): 391-396.
[3]任伟. 奇点模型范畴的Quillen等价[J]. 数学学报, 2019, 62(3): 521-528.
[4]汪军鹏, 狄振兴. Gorenstein正则环、奇点范畴和Ding模[J]. 数学学报, 2019, 62(2): 331-344.
[5]郭述锋. 相对整体维数有限的扩张[J]. 数学学报, 2019, 62(2): 191-200.
[6]毛雪峰, 何继位. 一类特殊的Koszul Calabi-Yau DG代数[J]. 数学学报, 2017, 60(3): 475-504.
[7]张海诚. m-循环复形范畴的Bridgeland--Hall代数的余代数结构[J]. Acta Mathematica Sinica, English Series, 2015, 58(6): 881-896.
[8]万前红, 郑立景, 郭晋云. 斜群代数与平凡扩张的表示维数[J]. Acta Mathematica Sinica, English Series, 2015, 58(3): 463-468.
[9]罗秀花, 居腾霞, 吴美云. rep(A3, I, A)中的Gorenstein投射模[J]. Acta Mathematica Sinica, English Series, 2015, 58(1): 115-124.
[10]李宜阳, 舒斌, 姚裕丰. sl(3, k)正则幂零表示投射模的Lowey序列[J]. Acta Mathematica Sinica, English Series, 2014, 57(5): 981-992.
[11]周俊超, 徐运阁, 陈媛. 一类自入射Koszul特殊双列代数的Hochschild同调群[J]. Acta Mathematica Sinica, English Series, 2012, 55(4): 627-640.
[12]曾月迪, 陈建龙. 内射余分解类与投射分解类[J]. Acta Mathematica Sinica, English Series, 2012, 55(1): 41-54.
[13]林增强, 王敏雄. 模范畴Recollement的Koenig定理[J]. Acta Mathematica Sinica, English Series, 2011, 54(3): 461-466.
[14]张东东, 朱海燕, 胡江胜. Gorenstein范畴上的一个问题[J]. 数学学报, 2019, 62(1): 151-156.
[15]赵良, 周毅强. n-强W-Gorenstein模[J]. 数学学报, 2017, 60(2): 279-296.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23552
相关话题/数学 代数 序列 结构 基础