摘要本文对自由半群作用的动力系统引入了估计熵和Δ-弱混合集的概念,得到一些性质.通过引入Δ-熊混沌集,给出了Δ-弱混合集的一个等价刻画. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2019-01-02 | | 基金资助:国家自然科学基金资助项目(11771459,11701584);广东外语外贸大学青年项目(18QN30)
| 作者简介: 钟兴富,E-mail:xfzhong@gdufs.edu.cn |
[1] Adler R. L., Konheim A. G., McAndrew M. H, Topological entropy, Transactions of the American Mathematical Society, 1965, 114(2):309-319. [2] Akin E., Lectures on Cantor and Mycielski sets for dynamical systems, Chapel Hill Ergodic Theory Workshops, 2004:21-79. [3] Bi? A., Entropies of a semigroup of maps, Discrete and Continuous Dynamical Systems, 2004, 11(2-3):639-648. [4] Blanchard F., Huang W., Entropy sets, weakly mixing sets and entropy capacity, Discrete & Continuous Dynamical Systems-Series A, 2012, 20(2):275-311. [5] Bowen R., Entropy for group endomorphisms and homogeneous spaces, Transactions of the American Mathematical Society, 1971, 153:401-401. [6] Bowen R., Topological entropy for noncompact sets, Transactions of the American Mathematical Society, 1973, 184:125-136. [7] Bufetov A., Topological entropy of free semigroup actions and skew-product transformations, Journal of Dynamical and Control Systems, 1999, 5(1):137-143. [8] Carrasco-Olivera D., Alvan R. M., Rojas C. A. M., Topological entropy for set-valued maps, Discrete & Continuous Dynamical Systems-Series B, 2015, 20(10):3461-3474. [9] Carvalho M., Rodrigues F. B., Varandas P., Quantitative recurrence for free semigroup actions, Nonlinearity, 2018, 31(3):864. [10] Chen Z., Li J., Lü J., Point transitivity, Δ-transitivity and multi-minimality, Ergodic Theory and Dynamical Systems, 2015, 35(5):1423-1442. [11] Colonius F., Kawan C., Nair G., A note on topological feedback entropy and invariance entropy, Systems & Control Letters, 2013, 62(5):377-381. [12] Colonius F., Kawan C., Invariance entropy for control systems, SIAM Journal on Control and Optimization, 2009, 48(3):1701-1721. [13] Dinaburg E. I, A correlation between topological entropy and metric entropy, Dokl. Akad. Nauk Sssr, 1970, 190:19-22. [14] Huang W., Li J., Ye X., et al., Positive topological entropy and Δ-weakly mixing sets, Advances in Mathematics, 2017, 306:653-683. [15] Huang Y., Zhong X., Carathéodory-Pesin structures associated with control systems, Systems & Control Letters, 2018, 112:36-41. [16] Huang Y., Zhong X., Topological entropy of switched systems, Journal of the Korean Mathematial Society, 2018, 55(5):1157-1175. [17] Huang Y., Zhong X., Weak Mixing of Switched Systems, Science China Mathematics, 2018, accepted. [18] Hui H., Ma D., Some remarks on measure-theoretic entropy for a free semigroup action, Taiwanese Journal of Mathematics, 2017, 21(2):429-440. [19] Hui H., Ma D., Some dynamical properties for free semigroup actions, Stochastics and Dynamics, 2018, 18(4):1850032(20pages). [20] Kawan C., Exponential state estimation, entropy and Lyapunov exponents, Systems & Control Letters, 2018, 113:78-85. [21] Kelly J., Tennant T., Topological entropy on set-valued functions, arXiv preprint arXiv:1509.08413, 2015. [22] Kurka P., Topological and Symbolic Dynamics, Société Mathématique de France, Paris, 2003. [23] Liberzon D., Mitra S., Entropy and minimal data rates for state estimation and model detection, In:Proceedings of the 19th International Conference on Hybrid Systems:Computation and Control, ACM, 2016, 247-256. [24] Lin X., Ma D., Wang Y., On the measure-theoretic entropy and topological pressure of free semigroup actions, Ergodic Theory & Dynamical Systems, 2018, 38:686-716. [25] Ma D., Wu M., Topological pressure and topological entropy of a semigroup of maps, Discrete Contin. Dyn. Syst., 2011, 31(2):545-557. [26] Matveev A., Pogromsky A., Observation of nonlinear systems via finite capacity channels:Constructive data rate limits, Automatica, 2016, 70:217-229. [27] Moothathu T. S., Diagonal points having dense orbit, Proceedings of Colloquium Mathematicum Instytut Matematyczny Polskiej Akademii Nauk, 2010, 120(1):127-138. [28] Nadler S. B., Hyperspaces of Sets, A Text with Research Questions, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 49. Marcel Dekker, Inc., New York, Basel, 1978. [29] Nair G. N., Evans R. J., Mareels I. M. Y., et al., Topological feedback entropy and Nonlinear stabilization, IEEE Transactions on Automatic Control, 2004, 49(9):1585-1597. [30] Oprocha P., Coherent lists and chaotic sets, Discrete & Continuous Dyn. Sys., 2013, 31(3):797-825. [31] Pesin Y. B., Pitskel' B. S., Topological pressure and the variational principle for noncompact sets, Functional Analysis and Its Applications, 1984, 18(4):307-318. [32] Savkin A. V., Analysis and synthesis of networked control systems:topological entropy, observability, robustness and optimal control, Automatica, 2006, 42(1):51-62. [33] Sun Z., Ge S. S., Switched Linear Systems:Control and Design, Springer-Verlag, London, 2005. [34] Tang J., Li B., Cheng W. C., Some properties on topological entropy of free semigroup action, Dynamical Systems, 2018, 33(1):54-71. [35] Wang Y., Ma D., On the topological entropy of a semigroup of continuous maps, Journal of Mathematical Analysis and Applications, 2015, 427(2):1084-1100. [36] Wang Y., Ma D., Lin X., On the topological entropy of free semigroup actions, Journal of Mathematical Analysis and Applications, 2016, 435(2):1573-1590. [37] Walters P., An Introduction to Ergodic Theory, Graduate Texts in Mathematics, Vol. 79, Springer-Verlag, New York, 1982. [38] Xiong J., Yang Z., Chaos caused by a topological mixing map, In:Shiraiwa K., eds., Proceedings of Advance Series in Dynamical Systems, 1990. [39] Zeng T., Multi-transitivity and Δ-transitivity for semigroup actions, Topology and Its Appl., 2017, 226:1-15. [40] Zhong X., Lü J., Functional envelope of Cantor spaces, Acta Math. Sin., Engl. Series, 2017, 33(3):1-14.
|
[1] | 侯成军. 一类Smale空间上的C*-代数自同构的熵[J]. 数学学报, 2017, 60(1): 149-158. | [2] | 杨冰, 侯成军. 双重导子的连续性[J]. Acta Mathematica Sinica, English Series, 2015, 58(5): 853-860. | [3] | 林跃峰. 点度和面度的最小值是3的连通平图[J]. Acta Mathematica Sinica, English Series, 2014, 57(6): 1061-1080. | [4] | 殷允强, 詹建明. 模糊软P-超群[J]. Acta Mathematica Sinica, English Series, 2012, 55(1): 117-130. | [5] | 徐海峰. 方程Δg-aKg=0无正函数解的充分条件[J]. Acta Mathematica Sinica, English Series, 2010, 53(5): 945-952. | [6] | 王肖义;李明军;. 拓扑熵为log 1.618的符号动力系统[J]. Acta Mathematica Sinica, English Series, 2009, (05): 61-66. | [7] | 郭训香;. 自伴算子代数上的某些*-自同态的σ-弱混合性[J]. Acta Mathematica Sinica, English Series, 2007, 50(5): 995-998. | [8] | 张金莲;朱玉峻;何连法. 非自治动力系统的原像熵[J]. Acta Mathematica Sinica, English Series, 2005, 48(4): 693-702. | [9] | 孙太祥. 树映射的不稳定流形,非游荡集与拓扑熵[J]. Acta Mathematica Sinica, English Series, 2002, 45(4): 647-660. | [10] | 曾凡平. 单峰扩张映射的捏制序列[J]. Acta Mathematica Sinica, English Series, 1998, 41(3): -. | [11] | 周作领. 紊动与拓扑熵[J]. Acta Mathematica Sinica, English Series, 1988, 31(1): 83-87. | [12] | 周作领. deg≥2的圆周自映射[J]. Acta Mathematica Sinica, English Series, 1985, 28(2): 200-204. | [13] | 周作领. 线段自映射的通有性质[J]. Acta Mathematica Sinica, English Series, 1984, 27(4): 532-535. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23525
广义映射Schrdinger-Virasoro代数的二上同调群王松,王晓明上海海洋大学信息学院上海201306SecondCohomologyGroupsoftheGeneralizedMapSchrdinger-VirasoroAlgebrasSongWANGXiao,Mi ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27李Rinehart代数的子代数若干性质王雪冰1,牛艳君2,陈良云31松原职业技术学院基础部松原138001;2长春工程学院理学院长春130024;3东北师范大学数学与统计学院长春130024SomePropertiesofSubalgebrasofLie-RinehartAlgebrasXueBin ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27基于弱Hopf代数的半单范畴的构造张晓辉,吴慧曲阜师范大学数学科学学院曲阜273165ConstructionofSemisimpleCategoriesoverWeakHopfAlgebrasXiaoHui,ZHANGHuiWUSchoolofMathematicalScience,QufuNor ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Dirichlet空间上Bergman型Toeplitz算子的代数性质秦杰,刘柚岐,黄穗重庆师范大学数学科学学院重庆401331AlgebraicPropertiesofBergman-TypeToeplitzOperatorsontheDirichletSpaceJieQIN,YouQiLIU,S ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27伪自伴量子系统的酉演化与绝热定理黄永峰1,2,曹怀信1,王文华31陕西师范大学数学与信息科学学院西安710119;2昌吉学院数学系昌吉831100;3陕西师范大学民族教育学院西安710119UnitaryEvolutionandAdiabaticTheoremofPseudoSelf-adjoint ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一类次线性弱耦合系统无穷多个周期解的存在性王超盐城师范学院数学与统计学院盐城224002TheExistenceofInfinitePeriodicSolutionsofaClassofSub-linearSystemswithWeakCouplingChaoWANGSchoolofMathemat ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27冯诺依曼代数的可测算子的性质沈丛丛1,2,蒋立宁2,王利广31.北京物资学院信息学院北京101149;2.北京理工大学数学与统计学院北京100081;3.曲阜师范大学数学科学学院曲阜273165PropertiesofMeasurableOperatorsAssociatedwith ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27时标上具正负系数的三阶阻尼动力方程的振动性张萍1,杨甲山21.邵阳学院理学院,邵阳422004;2.梧州学院大数据与软件工程学院,梧州543002OscillationofThird-orderDampedDynamicEquationswithPositiveandNegativeCoeffici ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27具年龄结构和非局部扩散的三种群Lotka-Volterra竞争合作系统行波解稳定性张丽娟,霍振香,任晴晴,王福昌防灾科技学院,廊坊065201StabilityoftheTravelingWaveSolutionsforThreeSpeciesLotka-VolterraCompetitive-co ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27带有非紧条件的拟线性Schrdinger-Poisson系统非平凡解的存在性陈丽珍1,冯晓晶2,李刚31.山西财经大学应用数学学院,太原,030006;2.山西大学数学科学学院,太原,030006;3.扬州大学数学科学学院,扬州,225002TheExistenceofNontrivia ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|