删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

自由半群的估计熵和Δ-弱混合集

本站小编 Free考研考试/2021-12-27

自由半群的估计熵和Δ-弱混合集 钟兴富广东外语外贸大学数学与统计学院 广州 510006 Estimation Entropy and Δ-weakly Mixing Sets for Free Semigroup Actions Xing Fu ZHONGSchool of Mathematics and Statistics, Guangdong University of Foreign Studies, Guangzhou 510006, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(541 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文对自由半群作用的动力系统引入了估计熵和Δ-弱混合集的概念,得到一些性质.通过引入Δ-熊混沌集,给出了Δ-弱混合集的一个等价刻画.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-01-02
MR (2010):O193
基金资助:国家自然科学基金资助项目(11771459,11701584);广东外语外贸大学青年项目(18QN30)
作者简介: 钟兴富,E-mail:xfzhong@gdufs.edu.cn
引用本文:
钟兴富. 自由半群的估计熵和Δ-弱混合集[J]. 数学学报, 2019, 62(6): 889-902. Xing Fu ZHONG. Estimation Entropy and Δ-weakly Mixing Sets for Free Semigroup Actions. Acta Mathematica Sinica, Chinese Series, 2019, 62(6): 889-902.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2019/V62/I6/889


[1] Adler R. L., Konheim A. G., McAndrew M. H, Topological entropy, Transactions of the American Mathematical Society, 1965, 114(2):309-319.
[2] Akin E., Lectures on Cantor and Mycielski sets for dynamical systems, Chapel Hill Ergodic Theory Workshops, 2004:21-79.
[3] Bi? A., Entropies of a semigroup of maps, Discrete and Continuous Dynamical Systems, 2004, 11(2-3):639-648.
[4] Blanchard F., Huang W., Entropy sets, weakly mixing sets and entropy capacity, Discrete & Continuous Dynamical Systems-Series A, 2012, 20(2):275-311.
[5] Bowen R., Entropy for group endomorphisms and homogeneous spaces, Transactions of the American Mathematical Society, 1971, 153:401-401.
[6] Bowen R., Topological entropy for noncompact sets, Transactions of the American Mathematical Society, 1973, 184:125-136.
[7] Bufetov A., Topological entropy of free semigroup actions and skew-product transformations, Journal of Dynamical and Control Systems, 1999, 5(1):137-143.
[8] Carrasco-Olivera D., Alvan R. M., Rojas C. A. M., Topological entropy for set-valued maps, Discrete & Continuous Dynamical Systems-Series B, 2015, 20(10):3461-3474.
[9] Carvalho M., Rodrigues F. B., Varandas P., Quantitative recurrence for free semigroup actions, Nonlinearity, 2018, 31(3):864.
[10] Chen Z., Li J., Lü J., Point transitivity, Δ-transitivity and multi-minimality, Ergodic Theory and Dynamical Systems, 2015, 35(5):1423-1442.
[11] Colonius F., Kawan C., Nair G., A note on topological feedback entropy and invariance entropy, Systems & Control Letters, 2013, 62(5):377-381.
[12] Colonius F., Kawan C., Invariance entropy for control systems, SIAM Journal on Control and Optimization, 2009, 48(3):1701-1721.
[13] Dinaburg E. I, A correlation between topological entropy and metric entropy, Dokl. Akad. Nauk Sssr, 1970, 190:19-22.
[14] Huang W., Li J., Ye X., et al., Positive topological entropy and Δ-weakly mixing sets, Advances in Mathematics, 2017, 306:653-683.
[15] Huang Y., Zhong X., Carathéodory-Pesin structures associated with control systems, Systems & Control Letters, 2018, 112:36-41.
[16] Huang Y., Zhong X., Topological entropy of switched systems, Journal of the Korean Mathematial Society, 2018, 55(5):1157-1175.
[17] Huang Y., Zhong X., Weak Mixing of Switched Systems, Science China Mathematics, 2018, accepted.
[18] Hui H., Ma D., Some remarks on measure-theoretic entropy for a free semigroup action, Taiwanese Journal of Mathematics, 2017, 21(2):429-440.
[19] Hui H., Ma D., Some dynamical properties for free semigroup actions, Stochastics and Dynamics, 2018, 18(4):1850032(20pages).
[20] Kawan C., Exponential state estimation, entropy and Lyapunov exponents, Systems & Control Letters, 2018, 113:78-85.
[21] Kelly J., Tennant T., Topological entropy on set-valued functions, arXiv preprint arXiv:1509.08413, 2015.
[22] Kurka P., Topological and Symbolic Dynamics, Société Mathématique de France, Paris, 2003.
[23] Liberzon D., Mitra S., Entropy and minimal data rates for state estimation and model detection, In:Proceedings of the 19th International Conference on Hybrid Systems:Computation and Control, ACM, 2016, 247-256.
[24] Lin X., Ma D., Wang Y., On the measure-theoretic entropy and topological pressure of free semigroup actions, Ergodic Theory & Dynamical Systems, 2018, 38:686-716.
[25] Ma D., Wu M., Topological pressure and topological entropy of a semigroup of maps, Discrete Contin. Dyn. Syst., 2011, 31(2):545-557.
[26] Matveev A., Pogromsky A., Observation of nonlinear systems via finite capacity channels:Constructive data rate limits, Automatica, 2016, 70:217-229.
[27] Moothathu T. S., Diagonal points having dense orbit, Proceedings of Colloquium Mathematicum Instytut Matematyczny Polskiej Akademii Nauk, 2010, 120(1):127-138.
[28] Nadler S. B., Hyperspaces of Sets, A Text with Research Questions, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 49. Marcel Dekker, Inc., New York, Basel, 1978.
[29] Nair G. N., Evans R. J., Mareels I. M. Y., et al., Topological feedback entropy and Nonlinear stabilization, IEEE Transactions on Automatic Control, 2004, 49(9):1585-1597.
[30] Oprocha P., Coherent lists and chaotic sets, Discrete & Continuous Dyn. Sys., 2013, 31(3):797-825.
[31] Pesin Y. B., Pitskel' B. S., Topological pressure and the variational principle for noncompact sets, Functional Analysis and Its Applications, 1984, 18(4):307-318.
[32] Savkin A. V., Analysis and synthesis of networked control systems:topological entropy, observability, robustness and optimal control, Automatica, 2006, 42(1):51-62.
[33] Sun Z., Ge S. S., Switched Linear Systems:Control and Design, Springer-Verlag, London, 2005.
[34] Tang J., Li B., Cheng W. C., Some properties on topological entropy of free semigroup action, Dynamical Systems, 2018, 33(1):54-71.
[35] Wang Y., Ma D., On the topological entropy of a semigroup of continuous maps, Journal of Mathematical Analysis and Applications, 2015, 427(2):1084-1100.
[36] Wang Y., Ma D., Lin X., On the topological entropy of free semigroup actions, Journal of Mathematical Analysis and Applications, 2016, 435(2):1573-1590.
[37] Walters P., An Introduction to Ergodic Theory, Graduate Texts in Mathematics, Vol. 79, Springer-Verlag, New York, 1982.
[38] Xiong J., Yang Z., Chaos caused by a topological mixing map, In:Shiraiwa K., eds., Proceedings of Advance Series in Dynamical Systems, 1990.
[39] Zeng T., Multi-transitivity and Δ-transitivity for semigroup actions, Topology and Its Appl., 2017, 226:1-15.
[40] Zhong X., Lü J., Functional envelope of Cantor spaces, Acta Math. Sin., Engl. Series, 2017, 33(3):1-14.

[1]侯成军. 一类Smale空间上的C*-代数自同构的熵[J]. 数学学报, 2017, 60(1): 149-158.
[2]杨冰, 侯成军. 双重导子的连续性[J]. Acta Mathematica Sinica, English Series, 2015, 58(5): 853-860.
[3]林跃峰. 点度和面度的最小值是3的连通平图[J]. Acta Mathematica Sinica, English Series, 2014, 57(6): 1061-1080.
[4]殷允强, 詹建明. 模糊软P-超群[J]. Acta Mathematica Sinica, English Series, 2012, 55(1): 117-130.
[5]徐海峰. 方程Δg-aKg=0无正函数解的充分条件[J]. Acta Mathematica Sinica, English Series, 2010, 53(5): 945-952.
[6]王肖义;李明军;. 拓扑熵为log 1.618的符号动力系统[J]. Acta Mathematica Sinica, English Series, 2009, (05): 61-66.
[7]郭训香;. 自伴算子代数上的某些*-自同态的σ-弱混合性[J]. Acta Mathematica Sinica, English Series, 2007, 50(5): 995-998.
[8]张金莲;朱玉峻;何连法. 非自治动力系统的原像熵[J]. Acta Mathematica Sinica, English Series, 2005, 48(4): 693-702.
[9]孙太祥. 树映射的不稳定流形,非游荡集与拓扑熵[J]. Acta Mathematica Sinica, English Series, 2002, 45(4): 647-660.
[10]曾凡平. 单峰扩张映射的捏制序列[J]. Acta Mathematica Sinica, English Series, 1998, 41(3): -.
[11]周作领. 紊动与拓扑熵[J]. Acta Mathematica Sinica, English Series, 1988, 31(1): 83-87.
[12]周作领. deg≥2的圆周自映射[J]. Acta Mathematica Sinica, English Series, 1985, 28(2): 200-204.
[13]周作领. 线段自映射的通有性质[J]. Acta Mathematica Sinica, English Series, 1984, 27(4): 532-535.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23525
相关话题/系统 数学 动力 代数 广东外语外贸大学