删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

用耦合方法研究马氏链f-指数遍历

本站小编 Free考研考试/2021-12-27

用耦合方法研究马氏链f-指数遍历 朱志锋1,2, 张绍义11. 湖北大学数学与统计学学院 武汉 430062;
2. 湖北工程学院数学与统计学院 孝感 432000 Study of f-exponent Ergodic of Markov Chains by Coupling Method Zhi Feng ZHU1,2, Shao Yi ZHANG11. School of Mathematics and Statistics, Hubei University, Wuhan 430062, P. R. China;
2. School of Mathematics and Statistics, Hubei Engineering University, Xiaogan 432000, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(348 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要该文在一般状态空间下研究马氏链指数遍历性,指数遍历马氏链,增加条件πfp)<∞,p>1,利用耦合方法得到了存在满的吸收集,使得马氏链在其上是f-指数遍历的.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2017-11-23
MR (2010):O211.4
基金资助:湖北工程学院科研基金资助项目(201506)
通讯作者:张绍义,E-mail:zhshaoyi@aliyun.com
作者简介: 朱志锋,E-mail:376574200@qq.com
引用本文:
朱志锋, 张绍义. 用耦合方法研究马氏链f-指数遍历[J]. 数学学报, 2019, 62(2): 287-292. Zhi Feng ZHU, Shao Yi ZHANG. Study of f-exponent Ergodic of Markov Chains by Coupling Method. Acta Mathematica Sinica, Chinese Series, 2019, 62(2): 287-292.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2019/V62/I2/287


[1] Ahmed M.A., Alkhamis T. M., Simulation–based optimization using simulated annealing with ranking and selection, Computers Operations Research, 2002, 29(4): 387–402.
[2] Andradottir S., A method for discrete stochastic optimization, Management Science, 1995, 41(12): 1946– 1961.
[3] Bowerman B., David H.T., Isaacson D., The convergence of Cesaro averages for certain non-stationary Markov chains, Stochastic Processes and Their Applications, 1977, 5(3): 221–230.
[4] Chen M. F., From Markov Chains to Non-equilibrium Particle Systems (Second Edition), World Scientific, Singapore, 2004.
[5] Gutjahr W.J., Pflug G., Simulated annealing for noisy cost functions, Journal of Global Optimization, 1996, 8: l–13.
[6] Lindvall T., Lectures on the Coupling Method, Wiley, New York, 1992.
[7] Meyn S. P., Tweedie R. L., Markov Chains and Stochastic Stability (1st Edition), Springer-Verlag, London, 1993.
[8] Zhang S. Y., Regularity and existence of invariant measures for jump processes, Acta Math. Sin., Chin. Ser., 2005, 48(4): 785–788.
[9] Zhang S. Y., Existence of the optimal measurable coupling and ergodicity for markov processes, Science in China, Ser. A, 1999, 42: 58–67.
[10] Zhang S. Y., The measurable coupling and probability distance of transition probability, Chinese Annals of Mathematics, 1995, 16(6): 769–775.
[11] Zhang S. Y., Xu K., The existence of optimal measurable coupling of transition probability, Acta Math. Sin., Chin. Ser., 1997, 40(1): 5–13.

[1]王超. 一类次线性弱耦合系统无穷多个周期解的存在性[J]. 数学学报, 2019, 62(2): 201-210.
[2]宋娟, 张铭. 非时齐马氏过程的耦合基本定理[J]. 数学学报, 2018, 61(2): 337-346.
[3]陈学勇, 杨茵. 一类趋化性模型行波解的存在性[J]. Acta Mathematica Sinica, English Series, 2012, 55(5): 819-828.
[4]张玉峰Fu Kui Guo. AKNS-KN 孤子方程族的可积耦合与Hamilton结构[J]. Acta Mathematica Sinica, English Series, 2008, 51(5): 889-900.
[5]李晓光;张健;. 二维空间中一类具临界幂的耦合非线性波动系统的爆破解[J]. Acta Mathematica Sinica, English Series, 2008, 51(4): 769-778.
[6]李应求;. 双无限随机环境中的常返马氏链[J]. Acta Mathematica Sinica, English Series, 2007, 50(5): 1099-111.
[7]李应求;王苏明;胡杨利;. 随机环境中马氏链与马氏双链间的相互关系[J]. Acta Mathematica Sinica, English Series, 2006, 49(6): 1373-138.
[8]周玲;. 具Ⅱ型Holling功能性反应强耦合椭圆系统的共存问题[J]. Acta Mathematica Sinica, English Series, 2006, 49(4): 827-834.
[9]王颖喆. R~n上扩散过程的代数式收敛[J]. Acta Mathematica Sinica, English Series, 2004, 47(5): 1001-101.
[10]席福宝. 带小扰动的随机发展方程的不变测度[J]. Acta Mathematica Sinica, English Series, 2004, 47(1): 197-202.
[11]高平;戴正德. 非线性应变波耦合组的吸引子的正则性[J]. Acta Mathematica Sinica, English Series, 2003, 46(1): 75-84.
[12]张宪. 半序度量空间中单调映射的不动点定理及混合单调映射的耦合不动点定理[J]. Acta Mathematica Sinica, English Series, 2001, 44(4): 641-646.
[13]张绍义. 关于非负下半连续函数最优可测耦合的存在性及其应用[J]. Acta Mathematica Sinica, English Series, 2000, 43(5): 773-780.
[14]沈沛龙;李福义. Banach空间非线性发展方程的耦合周期解[J]. Acta Mathematica Sinica, English Series, 2000, 43(4): 685-694.
[15]张绍义. 跳过程$\rho$最优耦合算子的存在[J]. Acta Mathematica Sinica, English Series, 1998, 41(2): 393-039.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23378
相关话题/空间 数学 系统 湖北 工程学院