摘要首先讨论了一个非线性标量化函数的基本性质并给出了其对偶形式.在此基础上建立了对向量值映射的恰当锥拟凸性的刻画.然后提出了锥形邻域的概念并给出了向量值映射的一类新的锥半连续性的统一定义.最后通过两个非线性标量化函数得到了对向量值映射的锥半连续性的完整刻画. |
[1] | Gerstewitz C H, Iwanow E. Dualität für nichtkonvexe vektoroptimierungsprobleme. Wissensch Zeitschr Tech., 1985, 31:61-81 | [2] | Luc D T. Theory of Vector Optimization. Berlin:Springer-Verlag, 1989 | [3] | Gerth C, Weidner P. Nonconvex separation theorems and some applications in vector optimization. Journal of Optimization Theory and Applications, 1990, 67(2):297-320 | [4] | Göpfert A, Riahi H, Tammer C, Zălinescu C. Variational Methods in Partially Ordered Spaces. New York:Springer, 2003 | [5] | Chen G Y, Huang X X, Yang X Q. Vector Optimization-Set-Valued and Variational Analysis. Berlin:Springer-Verlag, 2005 | [6] | Gutiérrez C, Jiménez B, Novo V. Optimality conditions for quasi-solutions of vector optimization problems. Journal of Optimization Theory and Applications, 2013, 167(3):796-820 | [7] | Chatterjee P, Lalitha C S. Scalarization of Levitin-Polyak well-posedness in vector optimization using weak efficiency. Optimization Letters, 2015, 9(2):329-343 | [8] | Khoshkhabar-amiranloo S, Soleimani-damaneh M. Scalarization of set-valued optimization problems and variational inequalities in topological vector spaces. Nonlinear Analysis:Theory, Methods & Applications, 2012, 75(3):1429-1440 | [9] | Li S J, Chen G Y, Teo K L, Yang X Q. Generalized minimax inequalities for set-valued mappings. Journal of Mathematical Analysis and Applications, 2003, 281(2):707-723 | [10] | Chen G Y, Yang X Q, Yu H. A nonlinear scalarization function and generalized quasi-vector equilibrium problems. Journal of Global Optimization, 2005, 32(4):451-466 | [11] | Araya Y. Four types of nonlinear scalarizations and some applications in set optimization. Nonlinear Analysis:Theory, Methods & Applications, 2012, 75(9):3821-3835 | [12] | Sach P H, Tuan L A. New scalarizing approach to the stability analysis in parametric generalized Ky Fan inequality problems. Journal of Optimization Theory and Applications, 2013, 157(2):347-364 | [13] | Zangenehmehr P, Farajzadeh A P, Vaezpour S M. On fixed point theorems for monotone increasing vector valued mappings via scalarizing. Positivity, 2015, 19(2):333-340 | [14] | Farajzadeh A P. On the scalarization method in cone metric spaces. Positivity, 2014, 18(4):703-708 | [15] | Luc D T, Raţiu A. Vector Optimization:Basic Concepts and Solution Methods in:Al-Mezel S A R, Al-Solamy F R M, Ansari Q H. Fixed Point Theory, Variational Analysis and Optimization. Boca Raton:CRC Press, Taylor & Francis Group, 2014, 249-306 | [16] | Araya Y. Nonlinear scalarizations and some applications in vector optimization. Nihonkai Math. J., 2010, 21(1):35-45 | [17] | Yang X M, Yang X Q, Chen G Y. Theorems of the alternative and optimization with set-valued maps. Journal of Optimization Theory and Applications, 2000, 107(3):627-640 | [18] | Yang X M, Li D, Wang S Y. Near-subconvexlikeness in vector optimization with set-valued functions. Journal of Optimization Theory and Applications, 2001, 110(2):413-427 | [19] | Sach P H. New generalized convexity notion for set-valued maps and application to vector optimization. Journal of Optimization Theory and Applications, 2005, 125(1):157-179 | [20] | Suneja S K, Meetu P L, Grover B. Higher-order cone-pseudoconvex, quasiconvex and other related functions in vector optimization. Optimization Letters, 2013, 7(4):647-664 | [21] | Ferro F. A minimax theorem for vector-valued functions. Journal of Optimization Theory and Applications, 1989, 60(1):19-31 | [22] | Jeyakumar V, Oettli W, Natividad M. A solvability theorem for a class of quasiconvex mappings with applications to optimization. Journal of Mathematical Analysis and Applications, 1993, 179(2):537-546 | [23] | Tanaka T. Generalized quasiconvexities, cone saddle points, and minimax theorems for vector-valued functions. Journal of Optimization Theory and Applications, 1994, 81(2):355-377 | [24] | Kuroiwa D. Convexity for set-valued maps. Applied Mathematics Letters, 1996, 9(2):97-101 | [25] | Kuroiwa D, Tanaka T, Ha T X D. On cone convexity of set-valued maps. Nonlinear Analysis:Theory, Methods & Applications, 1997, 30(3):1487-1496 | [26] | Li S J, Chen G Y, Lee G M. Minimax theorems for set-valued mappings. Journal of Optimization Theory and Applications, 2000, 106(1):183-199 | [27] | Popovici N. Explicitly quasiconvex set-valued optimization. Journal of Global Optimization, 2007, 38(1):103-118 | [28] | Lin Y C, Ansari Q H, Lai H C. Minimax theorems for set-valued mappings under cone-convexities. Abstract and Applied Analysis, 2013, 2012(1):137-138 | [29] | Lalitha C S, Chatterjee P. Stability for properly quasiconvex vector optimization problem. Journal of Optimization Theory and Applications, 2012, 155(2):492-506 | [30] | Lalitha C S, Chatterjee P. Stability and scalarization of weak efficient, efficient and Henig proper efficient sets using generalized quasiconvexities. Journal of Optimization Theory and Applications, 2012, 155(3):941-961 | [31] | Crespi G P, Kuroiwa D, Rocca M. Quasiconvexity of set-valued maps assures well-posedness of robust vector optimization. Ann. Oper. Res., 2017, 251(1-2):1-16 | [32] | Benoist J, Borwein J M, Popovici N. A characterization of quasiconvex vector-valued functions. Proc. Amer. Math. Soc., 2003, 131(4):1109-1113 | [33] | Benoist J, Popovici N. Characterizations of convex and quasiconvex set-valued maps. Mathematical Methods of Operations Research, 2003, 57(3):427-435 | [34] | Torre D L, Popovici N, Rocca M. Scalar characterizations of weakly cone-convex and weakly cone-quasiconvex functions. Nonlinear Analysis:Theory, Methods & Applications, 2010, 72(3-4):1909-1915 | [35] | Bianchi M, Hadjisavvas N, Schaible S. Vector equilibrium problems with generalized monotone bifunctions. Journal of Optimization Theory and Applications, 1997, 92(3):527-542 | [36] | Jahn J. Vector Optimization-Theory, Applications and Extensions, Second Edition. Heidelberg Berlin:Springer-Verlag, 2011 | [37] | Fabián F, Hadjisavvas N, Cristián V. An optimal alternative theorem and applications to mathematical programming. Journal of Global Optimization, 2007, 37(2):229-243 | [38] | 胡毓达, 孟志青. 凸分析和非光滑分析. 上海:上海科学技术出版社, 2000(Hu Y D, Meng Z Q. Convex Analysis and Nonsmooth Analysis. Shanghai:Shanghai Science and Technology Press, 2000) |
[1] | 吴唯钿, 仇秋生. 基于拟相对内部集值优化问题弱有效元的最优性条件[J]. 应用数学学报, 2021, 44(1): 146-158. | [2] | 周志昂, 刘爽. 集值优化问题的E-强有效解[J]. 应用数学学报, 2020, 43(5): 882-896. | [3] | 唐莉萍. 关于多目标优化问题真有效解的一点注记[J]. 应用数学学报, 2020, 43(5): 875-881. | [4] | 徐义红, 王磊. 一类新的二阶切导数及其在集值优化中的应用[J]. 应用数学学报, 2020, 43(3): 609-619. | [5] | 吴唯钿, 仇秋生, 田伟福. 非凸集值优化问题E-Benson真有效元的最优性条件[J]. 应用数学学报, 2018, 41(5): 620-631. | [6] | 杨玉红. 非光滑半无限多目标优化问题的Lagrange鞍点准则[J]. 应用数学学报, 2018, 41(1): 14-26. | [7] | 李飞, 杨玉红, 杨新民. 局部凸空间中的广义增广对偶锥[J]. 应用数学学报, 2017, 40(3): 368-376. | [8] | 徐义红, 彭振华. 一种新的二阶次梯度及其在刻画集值优化弱有效元中的应用[J]. 应用数学学报, 2017, 40(2): 204-217. | [9] | 赵克全, 夏远梅. 凸锥的一个广义内部性质[J]. 应用数学学报, 2016, 39(2): 289-297. | [10] | 徐义红, 张爱红. 二元集值函数ε-严有效元的鞍点刻画[J]. 应用数学学报, 2016, 39(2): 184-199. | [11] | 徐义红, 张霞. 关于《集值优化问题Henig真有效解的最优性条件》一文的注记[J]. 应用数学学报, 2016, 39(1): 94-99. | [12] | 王定畅, 仇秋生. 集值优化问题广义拟近似解的性质与存在性定理[J]. 应用数学学报, 2015, 38(5): 929-943. | [13] | 韩有攀, 李文敏, 李乃成. 集值优化问题Henig真有效解的最优性条件[J]. 应用数学学报(英文版), 2014, 37(1): 13-21. | [14] | 傅俊义, 王三华. 集值映射的对称向量拟均衡问题[J]. 应用数学学报(英文版), 2011, 34(1): 40-49. | [15] | 张亚琴. 自反Banach空间中向量优化问题弱有效解集特性的进一步研究[J]. 应用数学学报(英文版), 2011, 34(1): 102-112. |
|
PDF全文下载地址:
http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14931
基于样本次序统计量的总体分位数的非参数统计推断赵旭,程维虎北京工业大学理学部,北京100124Non-parametricStatisticalInferenceforthePopulationQuantilesBasedonOrderStatisticsofSamplesZHAOXu,CHENGW ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27偏正态数据下混合非线性位置回归模型的统计诊断曹幸运,聂兴锋,吴刘仓昆明理工大学理学院,昆明650093StatisticalDiagnosisofMixtureNonlinearLocationRegressionModelwithSkew-NormalDataCAOXingyun,NIEXingf ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27关于多目标优化问题真有效解的一点注记唐莉萍重庆工商大学数学与统计学院,重庆400067ANoteonGeoffrionProperlyEfficientSolutionsofMultiobjectiveOptimizationProblemsTANGLipingCollegeofMathematic ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27集值优化问题的E-强有效解周志昂,刘爽重庆理工大学理学院,重庆400054E-StrongEfficiencyofSet-ValuedOptimizationProblemsZHOUZhiang,LiuShuangCollegeofSciences,ChongqingUniversityofTech ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27病例-队列设计下长度偏差数据的比例均值剩余寿命模型的统计推断徐达1,周勇2,31.上海财经大学统计与管理学院,上海200082;2.华东师范大学经管学部交叉科学研究院及统计学院,上海200241;3.中国科学院数学与系统科学研究院,北京100190ProportionalMeanResidualLi ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27非凸集值优化问题E-Benson真有效元的最优性条件吴唯钿1,仇秋生1,田伟福21.浙江师范大学数学系,金华321004;2.浙江师范大学计划财务处,金华321004TheOptimalityConditionsofE-BensonProperEfficientElementforNonconvex ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27非光滑半无限多目标优化问题的Lagrange鞍点准则杨玉红1,21.内蒙古大学数学科学学院,呼和浩特010021;2.长江师范学院数学与统计学院,重庆408100LagrangeSaddlePointCriteriaforNonsmoothSemi-infiniteMultiobjectiveOpt ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27新的梯度算法求解单位球笛卡尔积约束优化问题李明强1,2,韩丛英2,3,郭田德2,31.中国电子科技集团公司信息科学研究院,北京100086;2.中国科学院大学数学科学学院,北京100049;3.中国科学院大数据挖掘与知识管理重点实验室,北京100190NewGradientAlgorithmsfor ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27集值优化问题的非线性增广拉格朗日方法向丽苏州大学数学科学学院,苏州215006TheNonlinearAugmentedLagrangianMethodofSet-valuedOptimizationXIANGLiDepartmentofMathematics,SoochowUniversity,S ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一种新的二阶次梯度及其在刻画集值优化弱有效元中的应用徐义红,彭振华南昌大学数学系,南昌330031ANewKindofSecond-OrderSubgradientandApplicationstotheCharacterizationsforWeakMinimizerofSet-ValuedOpt ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|