删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

耦合DSW方程的周期波解与孤波解

本站小编 Free考研考试/2021-12-27

耦合DSW方程的周期波解与孤波解 张卫国, 杨萌上海理工大学理学院, 上海 438000 Solitary and Periodic Wave Solutions Coupled Drinfel'd-Sokolov-Wilson Equations ZHANG Weiguo, YANG MengCollege of Science, University of Shanghai for Science and Technology, Shanghai 438000, China
摘要
图/表
参考文献
相关文章(2)
点击分布统计
下载分布统计
-->

全文: PDF(760 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究了耦合DSW方程的孤波解和周期波解以及它们间的演化关系.文中利用平面动力系统的理论和方法对DSW方程的行波解进行了定性分析,给出了在不同参数条件下的全局相图.在此基础上,运用待定假设法得到了该方程三种形式的孤波解,还通过首次积分和适当的变换得到了六种形式的周期波解.文中进一步研究了所求周期波解和孤波解的演化关系,给出了周期波解向孤波解演化的示意图.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-11-11
PACS:O175.2
基金资助:国家自然科学基金资助项目(11471215).

引用本文:
张卫国, 杨萌. 耦合DSW方程的周期波解与孤波解[J]. 应用数学学报, 2020, 43(5): 792-820. ZHANG Weiguo, YANG Meng. Solitary and Periodic Wave Solutions Coupled Drinfel'd-Sokolov-Wilson Equations. Acta Mathematicae Applicatae Sinica, 2020, 43(5): 792-820.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2020/V43/I5/792


[1] Drinfle'd V G, Sokolov V V. Equations of Korteweg-de Vries type, and simple Lie algebras. Sov. Math. Dokl., 1981, 23:457
[2] Wilson G. The affine Lie algebra C2(1) and an equation of Hirota and Satsuma. Physics Letters A, 1982, 89:33-2-334
[3] Jimbo M, Miwa T. Solitons and Infinite Dimensional Lie Algebras. Publications of the Research Institute for Mathematical, 1983, 19:943-1001
[4] Hirota R, Grammaticos B, Ramani A. Soliton structure of the Drinfeld-Sokolov-Wilson equation. Journal of Mathematical Physics, 1986, 27:1499-1505
[5] Yao R X, Li Z B. New exact solutions for three nonlinear evolution equations. Physics Letters A, 2002, 297:196-204
[6] Liu C P, Liu X P. Exact solutions of the classical Drinfel'd-Sokolov-Wilson equations and the relations among the solutions. Physics Letters A, 2002, 303:197-203
[7] Kamruzzaman Khan M Ali Akbar, Md Nur Alam. Traveling wave solutions of the nonlinear Drinfel'dSokolov-Wilson equation and modified Benjamin-Bona-Mahony equations. Journal of the Egyption Mathematical Society, 2013, 21:233-240
[8] Rajan Arora, Anoop Kumar. Solution of the Coupled Drinfeld's Sokolov Wilson System by Homotopy Analysis Method. Advanced Science, Engineering and Medicine, 2013, 5:1105-1111
[9] Geng X G, Wu L H. Darboux Transformation and Explicit Solutions for Drinfel'd-Sokolov-Wilson Equation. Communications in Theoretical Physics, 2010, 53:1090-1096
[10] Yao Y Q. Abundant families of new traveling wave solutions for the coupled Drinfeld-Sokolov-Wilson equation. Chaos, Solitons and Fractals, 2005, 24:301-307
[11] Zhao X Q, Zhi H Y. An Improved F-expansion Method and Its application to coupled Drinfel'dSokolov-Wilson equation. Communications in Theoretical Physics, 2008, 50:309-314
[12] Fu Z T, Yuan N M, Chen Z. Multi-order exact solutions to the Drinfel'd-Sokolov-Wilson equations. Physics Letters A, 2009, 373:3710-3714
[13] Zhang W G, Chang Q S, Fan E G. Methods of judging shape of solitary wave and solution formulae for some evolution equations with nonlinear terms of high order. Journal of Mathematical Analysis and Applications, 2003, 287:1-18
[14] Zhang W G, Zhao Y, Teng X Y. Approximate Damped Oscillatory Solutions for Compound KDVBurgers Equation and Their Error Estimates. Acta Mathematics Applicatae Sinica, 2012, 28(2):305-324
[15] 马知恩, 周义仓. 常微分方程定性与稳定性方法. 北京:科学出版社, 1985(Ma Z E, Zhou Y C. Qualitative and stable methods of ordinary differential equations. Beijing:Science Press, 1985)
[16] 张芷芬, 丁同仁, 黄文灶等. 微分方程定性理论. 北京:科学出版社, 1985(Zhang Z F, Ding T R, Huang W Z, etc. Qualitative theory of differential equations. Beijing:Science Press, 1985)
[17] 刘式达, 刘式适. 特殊函数论. 北京:高等教育出版社, 1994(Liu S D, Liu S S. Special function theory. Beijing:Higher education Press, 1994)
[18] Byrd P F, Friedman M D. Handbook of Elliptic Integrals for Engineers and Scientists, 2nd edition. New York:Springer-Verlag, 1971

[1]汪春江, 舒级, 李倩, 王云肖, 杨袁. Gardner-Kadomtsev-Petviashvili方程的精确行波解与分支[J]. 应用数学学报, 2018, 41(2): 215-228.
[2]邓圣福, 郭柏灵. 一类变式Boussinesq系统的行波解[J]. 应用数学学报(英文版), 2012, (6): 1099-1112.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14820
相关话题/北京 应用数学 系统 统计 上海理工大学