摘要本文研究了耦合DSW方程的孤波解和周期波解以及它们间的演化关系.文中利用平面动力系统的理论和方法对DSW方程的行波解进行了定性分析,给出了在不同参数条件下的全局相图.在此基础上,运用待定假设法得到了该方程三种形式的孤波解,还通过首次积分和适当的变换得到了六种形式的周期波解.文中进一步研究了所求周期波解和孤波解的演化关系,给出了周期波解向孤波解演化的示意图. |
[1] | Drinfle'd V G, Sokolov V V. Equations of Korteweg-de Vries type, and simple Lie algebras. Sov. Math. Dokl., 1981, 23:457 | [2] | Wilson G. The affine Lie algebra C2(1) and an equation of Hirota and Satsuma. Physics Letters A, 1982, 89:33-2-334 | [3] | Jimbo M, Miwa T. Solitons and Infinite Dimensional Lie Algebras. Publications of the Research Institute for Mathematical, 1983, 19:943-1001 | [4] | Hirota R, Grammaticos B, Ramani A. Soliton structure of the Drinfeld-Sokolov-Wilson equation. Journal of Mathematical Physics, 1986, 27:1499-1505 | [5] | Yao R X, Li Z B. New exact solutions for three nonlinear evolution equations. Physics Letters A, 2002, 297:196-204 | [6] | Liu C P, Liu X P. Exact solutions of the classical Drinfel'd-Sokolov-Wilson equations and the relations among the solutions. Physics Letters A, 2002, 303:197-203 | [7] | Kamruzzaman Khan M Ali Akbar, Md Nur Alam. Traveling wave solutions of the nonlinear Drinfel'dSokolov-Wilson equation and modified Benjamin-Bona-Mahony equations. Journal of the Egyption Mathematical Society, 2013, 21:233-240 | [8] | Rajan Arora, Anoop Kumar. Solution of the Coupled Drinfeld's Sokolov Wilson System by Homotopy Analysis Method. Advanced Science, Engineering and Medicine, 2013, 5:1105-1111 | [9] | Geng X G, Wu L H. Darboux Transformation and Explicit Solutions for Drinfel'd-Sokolov-Wilson Equation. Communications in Theoretical Physics, 2010, 53:1090-1096 | [10] | Yao Y Q. Abundant families of new traveling wave solutions for the coupled Drinfeld-Sokolov-Wilson equation. Chaos, Solitons and Fractals, 2005, 24:301-307 | [11] | Zhao X Q, Zhi H Y. An Improved F-expansion Method and Its application to coupled Drinfel'dSokolov-Wilson equation. Communications in Theoretical Physics, 2008, 50:309-314 | [12] | Fu Z T, Yuan N M, Chen Z. Multi-order exact solutions to the Drinfel'd-Sokolov-Wilson equations. Physics Letters A, 2009, 373:3710-3714 | [13] | Zhang W G, Chang Q S, Fan E G. Methods of judging shape of solitary wave and solution formulae for some evolution equations with nonlinear terms of high order. Journal of Mathematical Analysis and Applications, 2003, 287:1-18 | [14] | Zhang W G, Zhao Y, Teng X Y. Approximate Damped Oscillatory Solutions for Compound KDVBurgers Equation and Their Error Estimates. Acta Mathematics Applicatae Sinica, 2012, 28(2):305-324 | [15] | 马知恩, 周义仓. 常微分方程定性与稳定性方法. 北京:科学出版社, 1985(Ma Z E, Zhou Y C. Qualitative and stable methods of ordinary differential equations. Beijing:Science Press, 1985) | [16] | 张芷芬, 丁同仁, 黄文灶等. 微分方程定性理论. 北京:科学出版社, 1985(Zhang Z F, Ding T R, Huang W Z, etc. Qualitative theory of differential equations. Beijing:Science Press, 1985) | [17] | 刘式达, 刘式适. 特殊函数论. 北京:高等教育出版社, 1994(Liu S D, Liu S S. Special function theory. Beijing:Higher education Press, 1994) | [18] | Byrd P F, Friedman M D. Handbook of Elliptic Integrals for Engineers and Scientists, 2nd edition. New York:Springer-Verlag, 1971 |
PDF全文下载地址:
http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14820
双参数奇摄动非线性抛物型系统的广义尖层解冯依虎1,2,侯磊2,莫嘉琪31.亳州学院电子与信息工程系,亳州236800;2.上海大学数学系,上海200436;3.安徽师范大学数学与统计学院,芜湖241003TheGeneralizedSpikeLayerSolutiontoSingularPertur ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27时标上二阶拟线性延迟阻尼动态系统的动力学行为分析李继猛1,杨甲山21.邵阳学院理学院,邵阳422004;2.梧州学院大数据与软件工程学院,梧州543002DynamicalBehaviorofSecond-orderQuasilinearDelayDampedDynamicEquationsonTi ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一类具有多重时滞的分数阶中立型微分系统的相对可控性杨礼昌,蒋威,盛家乐,刘婷婷,MusarrtNawaz安徽大学数学科学学院,合肥230601RelativeControllabilityofFractionalNeutralSystemwithMultipleDelaysYANGLichang,J ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27分数阶线性退化微分系统有限时间镇定性问题王盼盼,张志信,蒋威安徽大学数学科学学院,合肥230601Finite-timeStabilizabilityofFractionalLinearSingularDifferentialSystemWANGPanpan,ZHANGZhixin,JIANGWei ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Klein-Gordon-Maxwell系统的无穷多变号解张鲁豫华北水利水电大学数学与统计学院,郑州450011InfinitelyManySign-changingSolutionsfortheNonlinearKlein-Gordon-MaxwellSystemZHANGLuyuSchoolof ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27异构多智能体系统的非凸输入约束一致性黄辉1,莫立坡2,曹显兵21.广东财经大学统计与数学学院,广州510320;2.北京工商大学数学与统计学院,北京100048ConsensusofHeterogeneousMulti-agentSystemswithNonconvexInputConstraint ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27任意初态下非线性不确定系统的迭代学习控制李国军1,2,陈东杰2,韩一士2,许中石21.浙江工业大学信息工程学院,杭州310023;2.浙江警察学院公共基础部,杭州310053IterativeLearningControlwithArbitraryInitialStatesforNonlinearS ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27二阶奇异差分系统的正周期解许丽1,崔德标21.江苏省宿迁中学,宿迁223800;2.江苏省宿迁市宿城区水利局,宿迁223800PositivePeriodicSolutionsofSecondOrderSingularDifferenceSystemsXULi1,CUIDebiao21.Suqian ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27病例-队列设计下长度偏差数据的比例均值剩余寿命模型的统计推断徐达1,周勇2,31.上海财经大学统计与管理学院,上海200082;2.华东师范大学经管学部交叉科学研究院及统计学院,上海200241;3.中国科学院数学与系统科学研究院,北京100190ProportionalMeanResidualLi ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27非线性隐式分数阶微分方程耦合系统初值问题董佳华1,冯育强2,蒋君11.武汉科技大学理学院,武汉430065;2.冶金工业过程系统科学湖北省重点实验室,武汉430081TheProximalPointIterativeAlgorithmfortheInitialValueProblemforaCoup ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|