摘要本文研究具有分数阶Boussinesq方程光滑解的正则性准则.我们证得Boussinesq方程的一个改进的Beale-Kato-Majda准则.作为一个特殊情形,我们的定理包含了Planchon所获得有关不可压缩Euler方程的结果. |
[1] | Pedlosky J. Geophysical fluid dynamics. New York:Springer-Verlag, 1987 | [2] | Majda A, Bertozzi A. Vorticity and Incompressible Flow. Cambridge:Cambridge University Press, 2001 | [3] | Chae D. Global regularity for the 2D Boussinesq equations with partial viscosity terms. Adv. Math., 2006, 203:497-513 | [4] | Hmidi T, Keraani S, Rousset F. Global well-posedness for Euler-Boussinesq system with critical dissipation. Comm. Partial Differential Equations, 2011, 36:420-445 | [5] | Hmidi T, Keraani S, Rousset F. Global well-posedness for a Boussinesq-Navier-Stokes system with critical dissipation. J. Differential Equations, 2010, 249:2147-2174 | [6] | Jiu Q S, Miao C X, Wu J H, Zhang Z F. The 2D incompressible Boussinesq equations with general critical dissipation. SIAM J. Math. Anal., 2014, 46:3426-3454 | [7] | Cao C S, Wu J H. Global regularity for the two-dimensional anisotropic Boussinesq equations with vertical dissipation. Arch. Ration. Mech. Anal., 2013, 208:985-1004 | [8] | Chae D, Wu J H. The 2D Boussinesq equations with logarithmically supercritical velocities. Adv. Math., 2012, 230:1618-1645 | [9] | Danchin R, Paicu M. Global existence results for the anisotropic Boussinesq system in dimension two. Math. Models Methods Appl. Sci., 2011, 21:421-457 | [10] | Hou T Y, Li C M. Global well-posedness of the viscous Boussinesq equations. Discrete Contin. Dyn. Syst., 2005, 12:1-12 | [11] | Larios A, Lunasin E, Titi E S. Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and without heat diffusion. J. Differential Equations, 2013, 255:2636-2654 | [12] | Miao C X, Xue L T. On the global well-posedness of a class of Boussinesq-Navier-Stokes systems. NoDEA Nonlinear Differential Equations Appl., 2011, 18:707-735 | [13] | Wu J H, Xu X J, Ye Z. Global smooth solutions to the n-dimensional damped models of incompressible fluid mechanics with small initial datum. J. Nonlinear Science, 2015, 25:157-192 | [14] | Xu X J. Global regularity of solutions of 2D Boussinesq equations with fractional diffusion. Nonlinear Anal., 2010, 72:677-681 | [15] | Ye Z. A note on global well-posedness of solutions to Boussinesq equations with fractional dissipation. Acta Math. Sci., 2015, 35B:112-120 | [16] | Fan J S, Zhou Y. A note on regularity criterion for the 3D Boussinesq system with partial viscosity. Appl. Math. Lett., 2009, 22:802-805 | [17] | Beale J T, Kato T, Majda A. Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Comm. Math. Phys., 1984, 94:61-66 | [18] | Ye Z. Blow-up criterion of smooth solutions for the Boussinesq equations. Nonlinear Anal., 2014, 110:97-103 | [19] | Chae D, Nam H S. Local existence and blow-up criterion for the boussinesq equations. Proc. Roy. Soc. Edinburgh Sect. A, 1997, 127:935-946 | [20] | Chae D, Kim S, Nam H. Local existence and blow-up criterion of Hölder continuous solutions of the Boussinesq equations. Nagoya Math. J., 1999, 155:55-80 | [21] | Cui X N, Dou C S, Jiu Q S. Local well-posedness and blow up criterion for the inviscid Boussinesq system in Hölder spaces. J. Partial Differ. Equ., 2012, 25:220-238 | [22] | Danchin R. Remarks on the lifespan of the solutions to some models of incompressible fluid mechanics. Proc. Amer. Math. Soc., 2013, 141:1979-1993 | [23] | E W N, Shu C W. Samll-scale structures in Boussinesq convection. Phys. Fluids, 1994, 6:49-58 | [24] | Liu X, Wang M, Zhang Z F. Local well-posedness and blowup criterion of the Boussinesq equations in critical Besov spaces. J. Math. Fluid Mech., 2010, 12:280-292 | [25] | Qin Y M, Yang X G, Wang Y Z, Liu X. Blow-up criteria of smooth solutions to the 3D Boussinesq equations. Math. Methods Appl. Sci., 2012, 35:278-285 | [26] | Qiu H, Du Y, Yao Z A. A blow-up criterion for 3D Boussinesq equations in Besov spaces. Nonlinear Anal., 2010, 73:806-815 | [27] | Qiu H, Du Y, Yao Z A. Local existence and blow-up criterion for the generalized Boussinesq equations in Besov spaces. Math. Meth. Appl. Sci., 2013, 36:86-98 | [28] | Xiang Z Y. The regularity criterion of the weak solution to the 3D viscous Boussinesq equations in Besov spaces. Math. Methods Appl. Sci., 2011, 34:360-372 | [29] | Ye Z. On the regularity criterion for the 2D Boussinesq equations involving the temperature. Appl. Anal., 2016, 95:615-626 | [30] | Zhang Z J. A logarithmically improved regularity criterion for the 3D Boussinesq equations via the pressure. Acta Appl. Math., 2014, 131:213-219 | [31] | Planchon F. An extension of the Beale-Kato-Majda criterion for the Euler equations. Comm. Math. Phys., 2003, 232:319-326 | [32] | Kozono H, Ogawa T, Taniuchi Y. The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations. Math. Z., 2002, 242:251-278 | [33] | Kozono H, Taniuchi Y. Limiting case of the Sobolev inequalities in BMO, with application to the Euler equations. Comm. Math. Phys., 2000, 214:191-200 | [34] | Ishimura N, Morimoto H. Remarks on the blow-up criterion for the 3D Boussinesq equations. Math. Methods Appl. Sci., 1999, 9:1323-1332 | [35] | Fan J S, Ozawa T. Regularity criteria for the 3D density-dependent Boussinesq equations. Nonlinearity, 2009, 22:553-568 | [36] | Geng J, Fan J S. A note on regularity criterion for the 3D Boussinesq system with zero thermal conductivity. Appl. Math. Lett., 2012, 25:63-66 | [37] | Gala S, Guo Z, Ragusa M. A remark on the regularity criterion of Boussinesq equations with zero heat conductivity. Appl. Math. Lett., 2014, 27:70-73 | [38] | Kato T. Liapunov functions and monotonicity in the Euler and Navier-Stokes equations. Lecture Notes in Mathematics 1450, Berlin:Springer-Verlag, 1990 | [39] | Cannone M, Chen Q L, Miao C X. A losing estimate for the ideal MHD equations with application to blow-up criterion. SIAM J. Math. Anal., 2007, 38:1847-1859 |
PDF全文下载地址:
http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14632
双项时间分数阶慢扩散方程的一类高效差分方法杨晓忠,邵京,孙淑珍华北电力大学数理学院,北京102206AClassofEfficientDifferenceMethodsfortheDouble-termTimeFractionalSub-diffusionEquationYANGXiaozhong, ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27时间分数阶扩散方程双线性元的高精度分析樊明智,王芬玲,赵艳敏,史艳华,张亚东许昌学院数学与统计学院,许昌461000HighAccuracyAnalysisoftheBilinearElementfortheTime-FractionalDiffusionEqustionsFANMinzhi,WAN ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27病例-队列设计下长度偏差数据的比例均值剩余寿命模型的统计推断徐达1,周勇2,31.上海财经大学统计与管理学院,上海200082;2.华东师范大学经管学部交叉科学研究院及统计学院,上海200241;3.中国科学院数学与系统科学研究院,北京100190ProportionalMeanResidualLi ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27非线性隐式分数阶微分方程耦合系统初值问题董佳华1,冯育强2,蒋君11.武汉科技大学理学院,武汉430065;2.冶金工业过程系统科学湖北省重点实验室,武汉430081TheProximalPointIterativeAlgorithmfortheInitialValueProblemforaCoup ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27具有分数阶导数的积分边值问题正解的存在性冯立杰天津大学数学学院,天津300350ExistenceofPositiveSolutionsforIntegralBoundaryValueProblemswithFractionalDerivativesFENGLijieSchoolofMathemat ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27基于分数阶滑模控制器的不确定分数阶混沌系统同步阎晓妹1,尚婷1,赵小国21.西安理工大学自动化与信息工程学院,西安710048;2.西安建筑科技大学机电工程学院,西安710055SynchronizationofUncertainFractional-orderChaoticSystemsBased ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一类核反应堆数学模型正解的全局分歧陈瑞鹏,李小亚北方民族大学数学与信息科学学院,银川750021GlobalBifurcationofPositiveSolutionsofaMathematicalModelArisingInNuclearEngineeringCHENRuipeng,LIXiaoy ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27具有阶段结构的时滞分数阶捕食者-食饵系统的稳定性分析王虎1,田晶磊2,孙玉琴3,于永光11.中央财经大学统计与数学学院,北京100081;2.北京交通大学理学院,北京100044;3.内蒙古大学鄂尔多斯应用技术学院,内蒙古017000StabilityAnalysisofFractionalStag ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27空间四阶-时间分数阶扩散波方程的一个新的数值分析方法胡秀玲1,张鲁明21.江苏师范大学数学与统计学院,徐州221116;2.南京航空航天大学理学院,南京210016ANewNumericalMethodforFourth-orderFractionalDiffusion-waveSystemHUXi ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一类非线性分数阶微分方程多点积分边值问题解的存在性张福珍1,刘文斌2,王刚21.九州职业技术学院高等数学教研室,徐州221116;2.中国矿业大学数学学院,徐州221116ExistenceofSolutionsforNonlinearDifferentialEquationsofFractiona ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|