删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

多酶融合表达体系以木聚糖为辅助底物高效合成(S)-苯乙二醇

本站小编 Free考研考试/2021-12-26

多酶融合表达体系以木聚糖为辅助底物高效合成(S)-苯乙二醇
饶俊超, 张荣珍, 徐岩
江南大学生物工程学院, 教育部工业生物技术重点实验室, 江苏 无锡 214122
收稿日期:2020-01-10;修回日期:2020-04-03;网络出版日期:2020-06-16
基金项目:国家自然科学基金(31970045);江苏省六大人才高峰高层次人才资助项目(2015-SWYY-010);国家双一流学科(LITE2018-12);高等学校学科创新引智计划(111-2-06)
*通信作者:张荣珍, Tel:+86-510-85197760;Fax:+86-510-85918201;E-mail:rzzhang@jiangnan.edu.cn.

摘要[目的] 利用木聚糖为辅助底物加强手性催化反应中的辅酶循环,构建来源于近平滑假丝酵母(Candida parapsilosis)CCTCC M203011的(S)-羰基还原酶Ⅱ(SCRII)、枯草芽孢杆菌(Bacillussp.)YX-1葡萄糖脱氢酶突变体Ala258Phe/GDH和里氏木霉(Trichoderma reesei)Rut C-30木聚糖酶(XYN2)在大肠杆菌(Escherichia coli)BL21(DE3)中的融合表达体系,高效合成(S)-苯乙二醇。[方法] 调节3种酶编码基因在pET-28a载体上的位置,运用重叠延伸PCR技术,构建了E.coli/pET-SCRII-A258F-XYN2和E.coli/pET-A258F-SCRII-XYN2两种重组菌,研究了其合成(S)-苯乙二醇的最适反应条件。[结果] 重组菌株E.coli/pET-SCRII-A258F-XYN2在底物2-羟基苯乙酮与辅助底物木聚糖的比例为1:1、35℃、pH为7.0条件下,(S)-苯乙二醇的产率达98.8%(W/W);而重组菌株E.coli/pET-A258F-SCRII-XYN2在底物与辅助底物的比例为2:1、35℃、pH为7.0条件下,(S)-苯乙二醇的产率达95.6%(W/W),两者合成产物的光学纯度均>99%。[结论] 通过构建3种酶的融合表达体系,成功将木聚糖酶和葡萄糖脱氢酶突变体介导的辅酶再生循环体系引入不对称生物合成反应,提高了手性转化效率,为将大自然中丰富的木聚糖用于手性催化奠定了较扎实的研究基础。
关键词:(S)-羰基还原酶Ⅱ葡萄糖脱氢酶突变体木聚糖酶(S)-苯乙二醇多酶偶联体系
Efficient synthesis of (S)-phenyl-1, 2-ethanediol using xylan as the co-substrate by a multi-enzyme fusion expression system
Rao Junchao, Zhang Rongzhen, Xu Yan
Key Laboratory of Industrial Biotechnology, School of Bioengineering, Jiangnan University, Wuxi 214122, Jiangsu Province, China
Received: 10 January 2020; Revised: 3 April 2020; Published online: 16 June 2020
*Corresponding author: Rongzhen Zhang. Tel: +86-510-85197760; Fax: +86-510-85918201; E-mail: rzzhang@jiangnan.edu.cn.
Foundation item: Supported by the National Natural Science Foundation of China (31970045), by the Program for Advanced Talents within Six Industries of Jiangsu Province (2015-SWYY-010), by the National First-class Discipline Program of Light Industry Technology and by the Engineering (LITE2018-12) and by the Project of Innovation and Intelligence Introduction Plan of Universities (111-2-06)

Abstract: [Objective] To use xylan as co-substrate to enhance cofactor recycling in chiral catalytic reaction, we constructed a fusion expression system containing (S)-carbonyl reductase (SCRII) from Candida parapsilosis CCTCC M203011, glucose dehydrogenase mutant Ala258Phe (Ala258Phe/GDH) from Bacillus sp. YX-1, and xylanase 2 from Trichoderma reesei Rut C-30 in Escherichia coli BL21. The recombinant E. coli strains efficiently catalyzed 2-hydroxyacetophenone to (S)-phenyl-1, 2-ethanediol. [Methods] By adjusting the 3 encoding genes' locations in the pET-28a, 2 recombinant plasmids pET-SCRII-A258F-XYN2 and pET-A258F-SCRII-XYN2 were constructed by using the overlap extension PCR technology. The optimal temperature, pH value and the best ratio of 2-hydroxyacetophenone and co-substrate xylan for catalyzing (S)-phenyl-1, 2-ethanediol by the recombinant E. coli/pET-SCRII-A258F-XYN2 and E. coli/pET-A258F-SCRII-XYN2 were determined. [Results] Through the optimization of pH, temperature and the ratios between substrate and co-substrate, the recombinant E. coli/pET-SCRII-A258F-XYN2 produced (S)-phenyl-1, 2-ethanediol with a yield of 98.8% (W/W) under the optimal conditions:35℃, pH 7.0 and a 1:1 substrate-co-substrate ratio, while the recombinant E. coli/pET-A258F-SCRII-XYN2 produced (S)-phenyl-1, 2-ethanediol with a yield of 95.6% (W/W) under the optimal conditions:35℃, pH 7.0 and a 2:1 substrate-co-substrate ratio. The two recombinant strains catalyzed (S)-phenyl-1, 2-ethanediol with an optical purity >99%. [Conclusion] In the fusion expression system containing three enzymes, xylanase and glucose dehydrogenase mutant mediated cofactor regeneration was introduced into asymmetric biosynthesis reactions, which efficiency improved chiral biotransformation. This work supplied a more solid foundation by using the naturally abundant xylan for chiral catalysis.
Keywords: (S)-carbonyl reductase Ⅱglucose dehydrogenase mutantxylanase(S)-phenyl-1, 2-ethanediolmultienzyme coupled system
羰基还原酶以NAD(P)(H)为辅酶,将内源性和外源性羰基化合物还原为手性醇,该催化反应具有高度立体选择性[1]。光学纯手性醇是药物、农用化学品、精细化学品以及一些特殊材料的合成中不可缺少的重要的手性中间体[2-3]。与传统化学方法相比,生物催化更安全绿色[4-5]。近平滑假丝酵母(Candida parapsilosis)CCTCC M203011的(S)-羰基还原酶Ⅱ(SCRII),能够催化2-羟基苯乙酮(2-HAP)生成(S)-苯基乙二醇((S)-PED),然而单基因表达重组菌株Escherichia coli/pET-SCRII催化2-羟基苯乙酮的活性较低,催化5 g/L 2-羟基苯乙酮为(S)-苯乙二醇需要48 h[6]
氧化还原酶能针对关键手性位点直接进行催化获得目的手性产物。该类反应需要较昂贵的烟酰胺类辅酶NAD(P)(H)等的参与,不对称手性催化合成成本高。Zhang等成功将SCRII和GDH融合表达且固定化后以2-羟基苯乙酮为底物以D-葡糖为辅助底物高效合成(S)-苯乙二醇[7]。本实验室从Bacillus sp. YX-1中成功筛选到葡萄糖脱氢酶(GDH),可利用其对木糖的氧化脱氢用于辅酶循环[8]
研究将来源于平滑假丝酵母(Candida parapsilosis) CCTCC M203011的(S)-羰基还原酶Ⅱ(SCRII)[6]、枯草芽孢杆菌(Bacillus sp.) YX-1葡萄糖脱氢酶突变体A258F/GDH[8]和里氏木霉(Trichoderma reesei) Rut C-30木聚糖酶(XYN2)[9] 3个酶在E. coli BL21(DE3)中进行融合表达,通过调节3种编码基因在载体上距离启动子的远近,构建融合表达菌株,通过手性合成条件优化,高效合成目的产物(S)-苯乙二醇(图 1),为实现以五碳糖为辅助底物介导并强化辅酶循环、提高手性催化合成的效率奠定基础。
图 1 以木聚糖为辅助底物的(S)-PED生物合成途径 Figure 1 The biosynthetic pathway of (S)-PED with xylan as co-substrate.
图选项





1 材料和方法 1.1 材料
1.1.1 菌株与质粒:: 表 1为本研究中使用的菌株和质粒。
表 1. 菌株和质粒 Table 1. Strains and plasmids
Strains and plasmids Characteristics Source
Strains
E. coli JM109 Host for cloning target gene Invitrogen
E. coli BL21(DE3) Host for target gene expression Invitrogen
E. coli/pET-SCRII E. coli BL21(DE3) harboring pET-SCRII This lab
E. coli/pET-A258F/GDH E. coli BL21(DE3) harboring pET-A258F/GDH This lab
E. coli/pET-XYN2 E. coli BL21(DE3) harboring pET-XYN2 This study
Plasmids
pMD19-T Plasmid for target gene cloning Invitrogen
pET-28a Plasmid for target gene expression Invitrogen
pET-SCRII pET-28a containing SCRII This lab
pET-A258F/GDH pET-28a containing A258F/GDH This lab
pET-XYN2 pET-28a containing XYN2 This study


表选项







1.1.2 主要试剂和仪器: Primerstar、T4 DNA Ligase、限制性核酸内切酶BamH I和Sac I、IPTG均购于TaKaRa生物有限公司。质粒提取试剂盒、柱纯化收试剂盒和胶回收试剂盒购于OMEGA BIO-TEK。DNA Marker购于天根生化科技有限公司。引物由苏州金唯智生物科技有限公司合成。2-羟基苯乙酮、(R)和(S)-苯乙二醇购于TCI (日本)公司,木聚糖购于TaKaRa生物有限公司,辅酶NADP(H)购于上海索来宝公司,其余试剂均为国产分析纯。酶标仪购自美国Thermo公司;超声波破碎仪VCX750购自美国Sonic公司;AKTA avant 25蛋白纯化仪和镍离子亲和层析柱购自美国GE公司;戴安高效液相色谱仪Ulti Mate U-3000购自美国戴安公司,液相手性柱Chiralcel OB-H (4.6 mm×250 mm)购自日本Daicel公司。
1.2 融合表达质粒和重组菌株构建 分别以SCRII (GenBank ID:GQ411433)、A258F/GDH (CP009748.1)和XYN2 (U24191)基因序列为模板,通过DNAMAN软件设计引物(表 2)。调整SCRII、A258F/GDH在载体上的排列顺序,同时在3个基因之间插入(GGGGS)序列来实现融合表达,构建E. coli/pET-SCRII-A258F-XYN2和E. coli/pET-A258F-SCRII-XYN2两株3个酶融合表达的重组大肠杆菌菌株。融合表达基因经过胶回收、柱纯化及酶切后,将其连接到表达载体pET-28a上,经过DNA测序验证,获得重组菌株E. coli/pET-SCRII-A258F-XYN2和E. coli/pET- A258F-SCRII-XYN2。
表 2. 构建融合表达体系所需的引物 Table 2. Primers used in construction of fusion expression system
Primers Sequences (5′→3′)
S-G-2-F GGATCCATGGGCGAAATCGAATCTTATTGCAA (BamH I)
S-G-2-R TAAATCCGGATACATAGAGCCACCACCGCCTGGACAAGTGTAACCACCATC
G-2-F GGTTACACTTGTCCAGGCGGTGGTGGCTCTATGTATCCGGATTTAAAAGG
G-2-R TGGTCTGCATAGAGCCACCACCGCCACCGCGGCCAAACTGG
2-F TGGCCGCGGTGGCGGTGGTGGCTCTATGCAGACCATCCAGCCGGG
2-R GAGCTCGCTCACGGTAATGCTGG (Sac I)
G-S-2-F GGATCCATGTATCCGGATTTAAAAGG (BamH I)
G-S-2-R TTCGATTTCGCCCATAGAGCCACCACCGCCACCGCGGCCAAACTGG
S-2-F CAGTTTGGCCGCGGTGGCGGTGGTGGCTCTATGGGCGAAATCGAATCTTA
S-2-R TGGTCTGCATAGAGCCACCACCGCCTGGACAAGTGTAACCACCATC
2-f TGGACAAGTGGGCGGTGGTGGCTCTATGCAGACCATCCAGCCGGG
The sequence of GGGGS linker is bold; the restriction endonuclease sites are underlined.


表选项






1.3 菌体的表达与纯化 LB培养基:胰蛋白胨10 g/L,酵母提取物5 g/L,NaCl 10 g/L,pH 7.0,固体培养基添加2%琼脂粉。将重组菌株E. coli/pET-SCRII-A258F- XYN2和E. coli/pET-A258F-SCRII-XYN2接种到含有50 μg/mL卡那霉素的LB液体培养基中,于37 ℃、200 r/min振荡培养8 h后,转接到1 L摇瓶相同培养基中,培养至OD600为0.6–0.8,向培养基中加入终浓度为0.1 mmol/L的IPTG,于25 ℃诱导培养14 h后,收集菌体。菌体细胞经超声波破碎离心后的上清液作为粗酶液,并用于SDS-PAGE分析,检测目标蛋白的表达。分别称取10 g湿菌体E. coli/pET-SCRII-A258F-XYN2和E. coli/pET-A258F-SCRII-XYN2,重悬于0.1 mol/L Tris-HCl (pH 8.0)中,于冰浴中超声破碎细胞(工作1 s,间隔3 s,工作时间20 min),4 ℃条件下,12000×g离心40 min,收集上清液作为粗酶液。利用镍离子亲和层析柱对融合蛋白进行纯化。纯酶液超滤脱盐后用于酶活力测定。
1.4 酶活力的测定 SCRII酶活测定方法为:总反应体积为100 μL,分别加入终浓度为0.1 mol/L的PBS (pH 6.0)、0.5 mmol/L的NADPH和5.0 mmol/L 2-羟基苯乙酮,35 ℃保温2 min,加入适量纯酶液后开始扫描340 nm处吸光值的变化。
酶活力定义为:在酶活测定条件下,每分钟催化生成1 μmol的NADP+的酶量定义为一个酶活单位。
A258F/GDH酶活测定方法:总反应体积100 μL,分别加入终浓度为0.1 mol/L的Tris-HCl (pH 8.0)、2.0 mmol/L的NADP+及0.1 mol/L的D-木糖,35 ℃保温2 min,加入适量纯酶液后开始扫描340 nm处吸光值的变化。
酶活力定义为:在酶活测定条件下,每分钟催化生成1 μmol的NADPH的酶量定义为一个酶活单位。
蛋白质含量测定采用Bradford法[10],以牛血清白蛋白BSA为标准品。
酶活的计算公式为:酶活(U)=EW×V×103/ (6220×0.3)
其中EW:1 min内340 nm处吸光度的变化;V:反应液的体积(mL);6220:摩尔消光系数[L/(mol×cm)];0.3:光程距离(cm)。
XYN2酶活测定方法:采用Bailey等所述的方法,以1%的木聚糖(Sigma)为底物,在50 ℃条件下测定木聚糖酶活性[11],取稀释后的酶液0.1 mL,加入1%的木聚糖液0.9 mL,置于50 ℃水浴保温5 min,加入2 mL DNS于沸水浴中显色5 min,用自来水冷却后,加入蒸馏水定容至25 mL,测定540 nm处的吸光度,测定还原糖浓度。
酶活力单位定义为:每分钟水解木聚糖生成1 μmol木糖所需要的酶量定义为一个酶活单位。
1.5 不对称还原反应及其检测 重组菌株E. coli/pET-SCRII-A258F-XYN2和E. coli/pET-A258F-SCRII-XYN2于37 ℃条件下培养8 h,加入终浓度0.1 mmol/L IPTG进行诱导,继续培养14 h后,收集菌体。将收集的菌体在4 ℃条件下,用生理盐水洗涤菌体3次,称取0.1 g湿菌体用于生物转化反应。在1 mL缓冲液中,加入0.1 g重组菌体、6 mg的2-羟基苯乙酮和6 mg木聚糖,于35 ℃、200 r/min下反应24 h。离心取上清反应液用2 mL乙酸乙酯萃取;萃取液经HPLC分析,流动相:正己烷:异丙醇=9:1;柱流量:0.5 mL/min;柱温:25 ℃;可变波长扫描紫外检测器(VWD),检测波长为215 nm。根据峰面积计算产物(S)-苯乙二醇的光学纯度及产率。光学纯度的计算公式为:(R–S)/(R+S)×100%;通过HPLC检测峰面积,利用两种不同构型的标准曲线计算测得二者浓度,然后通过光学纯度计算公式可得光学纯度。
1.6 温度和pH对多酶融合表达催化转化(S)-苯乙二醇的影响 重组菌株催化2-羟基苯乙酮的最适温度的测定:分别让其在20–60 ℃下200 r/min反应,计算产物(S)-苯乙二醇的光学纯度和产率,确定最适反应温度。
多酶融合表达催化转化(S)-苯乙二醇最适pH的测定:在最适温度条件下,缓冲液分别为0.1 mol/L的柠檬酸-柠檬酸钠缓冲液(pH 4.0–6.0);0.1 mol/L的磷酸氢二钾-磷酸二氢钾缓冲液(pH 6.0–7.5);0.1 mol/L的Tris-HCl缓冲液(pH 7.5–9.0)时,计算在各pH条件下产物(S)-苯乙二醇的光学纯度和产率,确定反应最适pH。
1.7 底物与辅助底物之间配比对转化(S)-苯乙二醇的影响 底物和辅助底物的比例在5:1到1:5之间。其中2-羟基苯乙酮为6 g/L,木聚糖分别为1.2、2.0、3.0、6.0、18.0、30.0 g/L。反应在最适pH和最适温度条件下进行,计算产物(S)-苯乙二醇的光学纯度和产率。
2 结果和分析 2.1 重组菌株的构建 以pET28a-SCRII、pET28a-A258F/GDH和pET28a-XYN2为模板,通过重叠延伸PCR进行扩增,获得目的基因SCRII-A258F-XYN2和A258F-SCRII-XYN2 (图 2),经过1%琼脂糖凝胶电泳分析其DNA片段大小为2.3 kb。将其连接pMD19-T,经BamH I和Sac I双酶切后,连接在pET28a载体的BamH I-Sac I酶切后相对应的位置。重组质粒经双酶切鉴定后转入E. coli JM109(DE3)的感受态细胞,挑取单克隆提取质粒经测序验证,测序结果显示基因SCRII- A258F-XYN2和A258F-SCRII-XYN均克隆到表达载体上,获得重组质粒pET28a-SCRII-A258F- XYN2和pET28a- A258F-SCRII-XYN2。
图 2 融合表达体系构建示意图 Figure 2 Schematic diagram of fusion expression system construction.
图选项





2.2 重组菌株的表达与纯化 重组菌株E. coli/pET-SCRII-A258F-XYN2和E. coli/pET-A258F-SCRII-XYN2经过培养和IPTG诱导后,菌体细胞经超声波破碎后的上清液经SDS-PAGE检测,融合表达蛋白在大肠杆菌中有明显表达条带,大小为83 kDa左右(图 3第2、3泳道),与3种蛋白理论大小的总和相一致,表明融合基因SCRII-A258F-XYN2和A258F-SCRII- XYN2在大肠杆菌中均可溶性表达。同时还可以看到另一条明显的蛋白表达条带,大小为30 kDa,这表明除融合表达外,离启动子更近的SCRII或A258F/GDH表达量更高,产生过量表达,产生单独的蛋白条带[12]。用Ni2+柱亲和层析的方法对N端带有6×Histine标签的粗酶液进行纯化(图 3中第4、5泳道),并进行脱盐处理后,用于酶活性质测定。
图 3 融合蛋白表达与纯化的SDS-PAGE分析 Figure 3 SDS-PAGE of the fusion protein expression and purification. M: protein molecular weight markers; lane 1: cell-free extracts of E. coli/pET-28a induced by 0.1 mmol/L IPTG; lane 2: cell-free extracts of E. coli/ pET-A258F/GDH-SCRII-XYN2 induced by 0.1 mmol/L IPTG; lane 3: cell-free extracts of E. coli/ pET-SCRII-A258F/GDH-XYN2 induced by 0.1 mmol/L IPTG; lane 4: purified SCRII-A258F/GDH-XYN2; lane 5: purified A258F/GDH-SCRII-XYN2.
图选项





2.3 重组菌株的酶活测定 按照1.5中的方法,检测了重组菌株中3种酶的酶活,结果如表 3所示,在重组菌株E. coli/ pET-SCRII-A258F-XYN2中,SCRII、A258F/GDH和XYN2分别为4.58、3.71、188.49 U/mg,而在重组菌株E. coli/pET-A258F-SCRII-XYN2中3种酶酶活分别为6.54、2.43、231.78 U/mg。而SCRII、A258F/GDH和XYN2单独表达时的酶活分别为8.56、14.58、695.63 U/mg,均高于融合表达时3个酶的酶活,这可能是因为在融合蛋白中,3个基因位置的不同,空间位阻的不同,从而造成了这种酶活的差异。在重组菌株E. coli/pET-SCRII-A258F-XYN2中,SCRII和A258F/GDH两者酶活相近,但是在重组菌株E. coli/pET-A258F-SCRII-XYN2中,A258F/GDH酶活约为SCRII的2.7倍,这可能因为单独表达时A258F/GDH酶活就高于SCRII的酶活,同时在融合表达中SCRII基因在A258F/GDH之后,从而导致了A258F/GDH酶活比SCRII酶活高;而XYN2的酶活在2个重组菌株中均显著高于其他2种酶SCRII和A258F/GDH。
表 3. 重组菌株纯酶酶活测定 Table 3. Specific activities of the purified enzymes from different recombinant strains
Strains Specific activities/(U/mg)
Towards 2-HAP Towards xylose Towards xylan
E. coli/pET-SCRII 8.56±0.02 NDa ND
E. coli/pET-
A258F/GDH
ND 14.58±0.03 ND
E. coli/pET-XYN2 ND ND 659.63±5.60
E. coli/pET-SCRII-
A258F/GDH-XYN2
4.58±0.01 3.71±0.03 188.49±3.80
E. coli/pET-A258F/
GDH-SCRII-XYN2
6.54±0.02 2.43±0.02 231.78±3.20
ND: not detected.


表选项






2.4 融合表达体系催化转化(S)-苯乙二醇的最适温度和pH 由图 4可知,(S)-苯乙二醇合成的最适温度为35 ℃,此时重组菌株E. coli/pET-SCRII- A258F-XYN2和E. coli/pET-A258F-SCRII-XYN2转化反应产物的产率和光学纯度达到最大值,产率为91.8% (W/W)和84.8% (W/W),光学纯度为99.8%和99.5%。
图 4 温度对重组菌株生物转化(S)-PED的影响 Figure 4 Effects of temperature on the biotransformation of (S)-PED catalyzed by recombinant strains.
图选项





在最适温度下对2株重组菌株进行不对称还原反应,由图 5可知,重组菌株E. coli/pET-SCRII- A258F-XYN2和E. coli/pET-A258F-SCRII-XYN2催化合成(S)-苯乙二醇的最适pH为7.0,该条件下2株菌不对称还原反应产物(S)-苯乙二醇产率和光学纯度均达最高值,产率为94.7% (W/W)和88.6% (W/W),光学纯度为99.7%和99.6%。
图 5 pH对重组菌株生物转化(S)-PED的影响 Figure 5 Effects of pH on biotransformation of (S)-PED catalyzed by recombinant strains.
图选项





2.5 底物与辅助底物配比对催化转化(S)-苯乙二醇的影响 Cai等报道了不同底物和共底物比例的重组酶对生物转化效率的影响[13]。在融合表达中,SCRII和A258F/GDH的酶活性相似,功能较平衡,而XYN2的酶活较高,其催化木聚糖释放的木糖量远远高于重组菌株中其他两种酶对木糖的消耗量。因此,研究了底物2-羟基苯乙酮与辅助底物木聚糖的比例对不对称还原反应的影响。如图 6所示,重组菌株E. coli/pET-SCRII-A258F-XYN2在2-羟基苯乙酮与木聚糖的比例为1:1时,催化合成(S)-苯乙二醇的产率和光学纯度达到最高,分别为96.5% (W/W)和99.9%;而重组菌株E. coli/ pET-A258F-SCRII-XYN2在2-羟基苯乙酮与木聚糖的比例为2:1时,产物(S)-苯乙二醇产率和光学纯度达到最高,分别为89.6% (W/W)和99.7%。
图 6 2-HAP与木聚糖的比例对催化转化(S)-PED的影响 Figure 6 Optimization of ratios between 2-HAP and xylan for (S)-PED biotransformation by the whole-cells of E. coli/pET-SCRII-A258F-XYN2 and E. coli/pET-A258F-SCRII-XYN2.
图选项





2.6 融合表达体系转化(S)-苯乙二醇时间 为了探究不对称合成反应的最佳反应时间,在最适温度、pH和底物与辅助底物的比例条件下,研究了不对称合成(S)-苯乙二醇与时间之间的关系。由图 7可知,起始反应速率较快,整个反应过程中产物光学纯度始终保持在较高水平,反应进行到26 h时,重组菌株E. coli/pET-SCRII- A258F-XYN2和E. coli/pET-A258F-SCRII-XYN2催化产物的产率达最高值,分别为98.8% (W/W)和95.6% (W/W)。整个反应过程来看,重组菌株E. coli/pET-SCRII-A258F-XYN2的催化合成(S)-苯乙二醇的效率一直高于重组菌株E. coli/pET- A258F-SCRII-XYN2。
图 7 重组菌株不对称还原2-HAP合成(S)-PED的时间曲线 Figure 7 Time courses of asymmetric reduction of 2-HAP to (S)-PED by the recombinant strains.
图选项





3 讨论 本研究通过调整基因在载体上的位置成功实现3个酶在大肠杆菌中融合表达,构建的3种酶的融合表达体系E. coli/pET-SCRII-A258F-XYN2和E. coli/pET-A258F-SCRII-XYN2可以2-羟基苯乙酮为底物,木聚糖为辅助底物进行手性合成反应。在最适温度35 ℃和pH 7.0以及底物与辅助底物之间的最佳比例2:1或1:1的反应条件下,反应26 h,产物产率 > 95% (W/W),光学纯度 > 99%。Zhang等报道的SCRII和GDH融合表达且固定化后的转化反应的产率高达100% (W/W),光学纯度为99.9%,本研究与Zhang等的报道相比,产物(S)-苯乙二醇的光学纯度几乎一致,产率略低[7]
通过不对称还原反应条件优化,我们发现重组菌株E. coli/pET-A258F-SCRII-XYN2在最适条件下的产物产率和光学纯度均低于重组菌株E. coli/pET-SCRII-A258F-XYN2。可能是因为单独表达时A258F/GDH酶活高于SCRII酶活,同时SCRII和A258F/GDH在载体上的位置不同导致了这种差异。在重组菌株E. coli/pET-SCRII-A258F- XYN2中SCRII和A258F/GDH酶活相近,而在重组菌株E. coli/pET-A258F-SCRII-XYN2中SCRII相对A258F/GDH在载体上的位置靠后,而单独表达时酶活相对低,从而导致目标酶SCRII和A258F/GDH在重组菌株E. coli/pET- SCRII-A258F-XYN2中的功能比E. coli/pET- A258F-SCRII-XYN2中更趋于平衡[14]。本研究也尝试将XYN2调换位置,但是当SCRII或A258F/GDH为位于融合表达序列末端时,融合表达不能检测到二者酶活,这也表明基因在载体上的位置会对其酶活甚至能否可溶性表达产生影响。
此外,不对称转化反应中会伴随着D-木糖酸副产物的生成,有可能影响(S)-苯乙二醇产率,但是本研究中的目的产物(S)-苯乙二醇是在反应结束后,离心取上清用乙酸乙酯进行萃取,然后经HPLC进行检测,而反应体系中的缓冲液和副产物D-木糖酸不溶于乙酸乙酯,因此产物的纯度不会受到影响;此外在不对称转化实验中,也未发现随着副产物的积累而影响(S)-苯乙二醇的产率。
羰基还原酶是一种能高效催化合成手性化合物的生物催化剂,反应过程中需要NAD(P)(H)作为电子受体,具有很强的辅酶依赖性[15]。目前应用于辅酶再生的酶主要有甲酸脱氢酶、醇脱氢酶、葡萄糖脱氢酶等[16]。Yamamoto等将来源于克鲁维酵母的羰基还原酶和甲酸脱氢酶在大肠杆菌中共表达高效合成(S)-4-氯-3-羟基丁酸乙酯[17]。Jeon等证实了共表达葡萄糖脱氢酶和真菌细胞色素P450单加氧酶可以提高NADPH再生能力[18]。本研究将T. reesei Rut C-30木聚糖酶(XYN2)和Bacillus sp. YX-1葡萄糖脱氢酶突变体A258F/GDH作为强化辅酶循环的动力,成功引入到来源于C. parapsilosis CCTCC M203011 (S)-羰基还原酶Ⅱ催化(S)-苯乙二醇合成代谢途径中,首次将木聚糖作为辅酶再生的辅助底物进行手性催化合成,为后续五碳糖等在手性合成中的应用奠定了较扎实的基础。在后期的应用研究中,将进一步以木质纤维素的水解液为辅原料,优化以木糖或葡萄糖等辅助生产手性化合物,进一步降低手性制备成本。

References
[1] Goldberg K, Schroer K, Lütz S, Liese A. Biocatalytic ketone reduction-a powerful tool for the production of chiral alcohols-part Ⅱ:whole-cell reductions. Applied Microbiology and Biotechnology, 2007, 76(2): 249-255.
[2] Schoemaker HE, Mink D, Wubbolts MG. Dispelling the myths——biocatalysis in industrial synthesis. Science, 2003, 299(5613): 1694-1697. DOI:10.1126/science.1079237
[3] Torrelo G, Hanefeld U, Hollmann F. Biocatalysis. Catalysis Letters, 2015, 145(1): 309-345.
[4] Wenda S, Illner S, Mell A, Kragl U. Industrial biotechnology-the future of green chemistry?. Green Chemistry, 2011, 13(11): 3007-3047. DOI:10.1039/c1gc15579b
[5] Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K. Engineering the third wave of biocatalysis. Nature, 2012, 485(7397): 185-194. DOI:10.1038/nature11117
[6] Zhang RZ, Zhu GY, Zhang WC, Cao S, Ou XJ, Li XM, Bartlam M, Xu Y, Zhang XC, Rao ZH. Crystal structure of a carbonyl reductase from Candida parapsilosis with anti-Prelog stereospecificity. Protein Science, 2008, 17(8): 1412-1423. DOI:10.1110/ps.035089.108
[7] Zhang RZ, Jiang JW, Zhou JP, Xu Y, Xiao R, Xia XH, Rao ZM. Biofunctionalized "kiwifruit-assembly" of oxidoreductases in mesoporous zno/carbon nanoparticles for efficient asymmetric catalysis. Advanced Materials, 2018, 30(11): 1705443. DOI:10.1002/adma.201705443
[8] Li J, Zhang RZ, Xu Y, Xiao R, Li KP, Liu HY, Jiang JW, Zhou XT, Li LH, Zhou LX, Gu Y. Ala258Phe substitution in Bacillus sp. YX-1 glucose dehydrogenase improves its substrate preference for xylose. Process Biochemistry, 2017, 56: 124-131. DOI:10.1016/j.procbio.2017.03.003
[9] He J, Yu B, Zhang KY, Ding XM, Chen DW. Sequencing and expression of the xylanase gene 2 from Trichoderma reesei Rut C-30 and characterization of the recombinant enzyme and its activity on xylan. Journal of Molecular Microbiology and Biotechnology, 2009, 17(3): 101-109. DOI:10.1159/000226590
[10] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72(1/2): 248-254.
[11] Bailey MJ, Biely P, Poutanen K. Interlaboratory testing of methods for assay of xylanase activity. Journal of Biotechnology, 1992, 23(3): 257-270. DOI:10.1016/0168-1656(92)90074-J
[12] Rucker P, Torti FM, Torti SV. Recombinant ferritin:modulation of subunit stoichiometry in bacterial expression systems. Protein Engineering, 1997, 10(8): 967-973. DOI:10.1093/protein/10.8.967
[13] Cai P, An MD, Xu L, Xu S, Hao N, Li Y, Guo K, Yan M. Development of a substrate-coupled biocatalytic process driven by an NADPH-dependent sorbose reductase from Candida albicans for the asymmetric reduction of ethyl 4-chloro-3-oxobutanoate. Biotechnology Letters, 2012, 34(12): 2223-2227. DOI:10.1007/s10529-012-1029-x
[14] Zhang RZ, Zhang BT, Xu Y, Li YH, Li M, Liang HB, Xiao R. Efficicent (R)-phenylethanol production with enantioselectivity-alerted (S)-carbonyl reductase Ⅱ and NADPH regeneration. PLoS One, 2013, 8(12): e83586. DOI:10.1371/journal.pone.0083586
[15] Hollmann F, Arends IWCE, Holtmann D. Enzymatic reductions for the chemist. Green Chemistry, 2011, 13(9): 2285-2314. DOI:10.1039/c1gc15424a
[16] van der Donk WA, Zhao HM. Recent developments in pyridine nucleotide regeneration. Current Opinion in Biotechnology, 2003, 14(4): 421-426. DOI:10.1016/S0958-1669(03)00094-6
[17] Yamamoto H, Mitsuhashi K, Kimoto N, Kobayashi Y, Esaki N. Robust NADH-regenerator:improved α-haloketone-resistant formate dehydrogenase. Applied Microbiology and Biotechnology, 2005, 67(1): 33-39.
[18] Jeon H, Durairaj P, Lee D, Ahsan MM, Yun H. Improved NADPH regeneration for fungal cytochrome P450 monooxygenase by co-expressing bacterial glucose dehydrogenase in resting-cell biotransformation of recombinant Yeast. Journal of Microbiology and Biotechnology, 2016, 26(12): 2076-2086. DOI:10.4014/jmb.1605.05090

相关话题/光学 基因 生物 公司 培养