全文HTML
--> --> --> 现阶段我国大部分污水处理厂尾水已达到《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级A的出水标准,但其作为生态补给水直接排入受纳水体,仍会导致地表水体水质恶化,甚至产生富营养化等一系列水环境问题[1-2]。因此,探索经济可行的尾水深度处理技术对于保护水环境具有重要意义。目前针对污水处理厂尾水的深度处理,常用的方法有凝聚沉淀法[3-4]、臭氧化法[5-6]、反渗透法[7-8]、生物脱氮法[9-10]、人工湿地法[11-13]等。深度处理的基建费与运行费用大多均较高,使得以常规建设为主的深度处理技术应用受到一定限制。而人工湿地作为污水处理厂尾水深度处理工艺,不仅价格低廉、运维成本低,还可以兼具景观价值,故有关人工湿地在污水处理厂尾水深度处理的研究及相关应用推广研究已成为热点[14-19]。例如,王琳娜等[20]利用传统的水平潜流湿地处理不同浓度的污水处理厂尾水,出水均能达到景观回用水水质要求。虽然传统潜流湿地对有机物和悬浮物去除效果较好,但其对氮、磷的去除能力有限。为提升人工湿地尾水净化效果,复合式人工湿地得到广泛应用[21]。杨立君等[22]将垂直流人工湿地与强化型前处理系统相结合,对污水处理厂尾水COD、BOD5、

基于上述情况, 本研究选择江心洲污水处理厂建设的高负荷复合式人工湿地系统开展实验研究。该系统由浅池单元、双向横流过滤单元、折流式潜流单元、水平潜流单元和表流湿地单元构成,处理规模为1 200 m3·d?1,水力负荷约为0.67 m3·(m2·d)?1。通过对该系统在污水处理厂低温期净化效果的研究,旨在分析和研究低温条件下仍能保障净化效果的新型湿地系统,并提出一种利用湿地高负荷优势降低治理综合成本的新模式。
1.1. 工况概况
本项目位于南京市江心洲污水处理厂内,人工湿地处理规模为1 200 m3·d?1,占地面积约1 800 m2,水力负荷约为0.67 m3·(m2·d)?1,HRT为23 h。系统原水为江心洲污水处理厂尾水,出水水质近《地表水环境质量标准》(GB 3838-2002)Ⅳ类水标准,如表1所示。1.2. 工艺流程
建设的人工湿地系统的工艺流程如图1所示。尾水经过1次提升后采用重力流进行系统配水。首先,尾水运输至浅池单元进行高位配水,初步调节水质水量;出水自流进入7座并联的双向横流过滤单元(A-H),实现有机物和悬浮物的高效去除,并进行氮、磷的初级去除;后依次经过折流式潜流湿地单元和水平潜流湿地单元,进行悬浮物和有机物的强化去除且进行氮、磷的深度去除;出水进入表流湿地单元,从而进一步降低水体浊度,保障出水水质,最终出水进入中水回用系统。其中,双向横流过滤单元、折流式潜流单元、水平潜流单元剖面图如图2所示。1.3. 单元设计
复合式人工湿地系统由浅池单元、双向横流过滤单元、折流式潜流单元、水平潜流单元和表流湿地单元5部分组成,各单元具体设计参数见表2。1.4. 采样点设置
图3中红色标记为湿地系统的6个采样点,分别为各单元进出水口,其中编号a~f依次代表进出水口在系统中上下游的相对位置。取得水样500 mL分装于聚乙烯瓶,立即于实验室进行水质指标检测,或于4 ℃低温冷藏保存,在48 h内测定水质指标。1.5. 检测项目及分析方法
水质指标测定方法参照《水和废水监测分析方法(第4版)》。COD采用重铬酸钾法测定;TN采用过硫酸钾-紫外分光光度法测定;NH4+-N采用纳氏试剂分光光度法测定;TP采用过硫酸钾消解-钼酸铵分光光度法测定。2.1. COD去除效果
复合式人工湿地系统对COD的去除效果如图4所示。由图4(a)可知,进水耗氧有机污染物质量浓度(以COD计)为18.00~29.00 mg·L?1,平均出水质量浓度为16.60 mg·L?1,且在湿地沿程方向,COD值总体呈下降趋势。从人工湿地各个单元的处理效果来看,双向横流过滤单元处理效果最为显著,COD去除率达13%。该处理单元前段好氧有利于有机物分解,后段缺氧有利于反硝化脱氮的进行,且倒换水流方向,位于池体后段生物膜为反硝化提供内生碳源,表明其特殊的功能结构营造了较好的物化和生化反应条件,可实现对COD的有效去除。由图4(b)可看出,系统在进水COD较低的情况下,COD平均去除率可达到25%。12月中下旬,COD去除率有所下降。这与水平潜流湿地单元植物未及时收割,有机质腐烂并释放进入水体,使水中有机物含量升高有关。直到1月份植物收割后,COD去除率才回升。总体来说,COD的去除率较低是由于尾水中碳源含量较低,可生化性较差[26],湿地对有机物的生化降解能力相对减弱,COD去除主要是依靠植物根系吸收和基质吸附作用[27]。并且冬季低温条件下,植物凋零、休眠,造成植物根系泌氧能力下降,微生物活性较差。湿地系统对COD去除率的降低是植物、微生物、溶解氧等易受环境温度影响的多种因素共同作用的结果。
2.2. TN去除效果
复合式人工湿地系统对TN的去除效果如图5所示。由图5(a)可知,进水TN质量浓度6.82~11.90 mg·L?1,平均出水质量浓度为7.17 mg·L?1,湿地沿程方向TN质量浓度总体呈下降趋势。从人工湿地各个单元的处理效果来看,折流式潜流单元对TN的去除效果最佳,最高去除率可达26%,其次为双向横流过滤单元及浅池单元。折流式潜流单元通过竖向折流进水方式使污水与填料之间充分接触,其布水方式有助于单元均匀配水,而饱和流有助于营造缺氧环境,实现反硝化脱氮。此外,该单元丰富的植物群落能直接吸收污水中氮、磷类污染物,从而提高净化效果。由图5(b)可看出,TN平均去除率为24%,从11月中下旬起,TN去除率有所下降。这与冬季气温降低,周围环境温度低于反硝化菌的适温范围(20~35 ℃),硝化菌的正常生长繁殖受限有关。同时,湿地系统碳源不足在一定程度上制约了微生物反硝化作用,TN去除效果也受到一定影响[27]。此外,植物未及时收割,造成一部分氮、磷的释放进入水体。自1月初起,TN去除率先降低后升高,直到逐步稳定,这可能与进水水质波动有较大关系。例如,何媛媛等[28]的研究表明,当进水TN小于60 mg·L?1时,TN去除率随进水浓度增加而增大。 2.3. ${\bf{NH}}_4^{+} $
-N去除效果
复合式人工湿地系统对





































2.4. TP去除效果
复合式人工湿地系统对TP的去除效果如图7所示。由图7(a)可知,进水TP质量浓度0.03~0.06 mg·L?1,平均出水质量浓度为0.03 mg·L?1,沿水流方向,TP质量浓度总体呈下降趋势。由图7(b)可看出,TP平均去除率达到34%,表明系统在冬季低温不利条件下仍保持较高的TP去除率。湿地中磷去除主要通过基质物理吸附和化学沉降实现,其次为水生植物根系对溶解性磷的吸收及微生物的作用。但在冬季低温低碳源条件下,微生物活性弱,植物生长缓慢,对磷的去除主要是依靠自然沉降、填料吸附等作用,导致湿地除磷效果较差[27]。2.5. 微生物群落结构解析
1)微生物群落结构丰富度和多样性。复合式人工湿地中双向横流过滤湿地单元(A)、折流式潜流湿地单元(B)、水平潜流湿地单元(C)微生物群落结构丰富度和多样性结果如表3所示。样品覆盖率为92%,测序结果较为稳定。由表3可知,样品的覆盖率最低为98%,说明此次测序的结果能够准确完整的反应微生物样品的真实状况。3个微生物样品中ACE指数和Chao指数以折流式潜流湿地单元最高,Shannon 指数以双向横流过滤单元最高,但水平潜流湿地单元中ACE指数、Chao指数和Shannon 指数为较高,说明该湿地单元微生物的物种总数、菌落丰富度和多样性程度相对较高。
2)微生物群落结构组成。图8是微生物在门分类水平下的群落组成。由图8可知,不同样品在门分类水平上具有较高的多样性。系统中的优势菌门主要包括变形菌门(Proteobacteria)、蓝藻菌门(Cyanobacteria)、拟杆菌门(Bacteroidetes)、酸杆菌门(Acidobacteria)、浮霉菌门(Planctomycetes)、绿弯菌门(Chloroflexi)、放线菌门(Actinobacteria)、疣微菌门(Verrucomicrobia)、硝化螺旋菌门(Nitrospirae)、厚壁菌门(Firmicutes)等,并以变形菌门(Proteobacteria)、蓝藻菌门(Cyanobacteria)、拟杆菌门(Bacteroidetes)、酸杆菌门(Acidobacteria)、硝化螺旋菌门(Nitrospirae)为主,五者的总和约占总测序序列的75%~85%。有研究[29]表明,人工湿地基质优势菌种以变形菌门、酸杆菌门和绿弯菌门为主,所占比例为高于80%,这与本实验的结果相似。
人工湿地中含氮污染物的去除机理主要有硝化作用、反硝化作用以及氨氧化作用等[30],与之相关的微生物主要有氨氧化真菌/细菌、硝化细菌(Nitrifying bacteria)和反硝化细菌(Denitrifying bacteria)[31]。有研究者指出,变形菌门(Proteobacteria) 在生物脱氮除磷等其他污染物降解中具有核心作用[32]。由图8可知,变形菌门(Proteobacteria)在3个样品中分别占总测序序列的47%、51%和57%,因此,说明该复合式人工湿地在低温期仍具有较好的脱氮除磷效果,这与2.2~2.4节水质分析结果一致。拟杆菌门(Bacteroidetes)在3个样品中占总测序序列的15%左右,能够代谢碳水化合物,降解有机物,与放线菌门(Actinobacteria)共同担负污染物的有效去除[33]。硝化螺旋菌门(Nitrospirae)在双向横流过滤单元(A)中所占比例最高,由于双向横流过滤单元可实现正反向进水,前端氧气充足,故有利于硝化细菌生长,因此,该单元对总氮和氨氮去除效果较优。
2.6. 冬季低温期湿地植物根系泌氧速率
为适应长期的水渍环境,会在湿地植物体内部形成强大的通气组织,为气体交换和储存提供内部通道,将光合作用产生的氧气输送到根际基质中,从而增强根际周围微生物活性,进而加强有机物好氧降解和硝化作用[34],最终提高污水净化效果。双向横流过滤单元为复合式人工湿地的核心单元,对冬季低温期湿地稳定运行起主要作用。表4为双向横流过滤单元湿地植物的生长状况、根系特征和泌氧速率。由表4可知,冬季植物进入衰亡期,1月份植株干枯,地上部分生物量较12月份有所下降。这与冬季植物叶片脱落腐败,以及营养元素向根部转移有关,亦与刘臣[35]的研究结果相似。与此同时,随冬季气温骤降,植物根系也逐渐进入冬眠状态,湿地植物的根孔隙度随之降低。然而,植物内部通气组织性能的减弱,导致第2年1月份再力花根系泌氧速率极低,而3种植物中根孔隙度最大的芦竹根系泌氧速率也仅达到5.14 μmol·(d·g)?1。总而言之,在冬季低温条件下,由于植物凋零、休眠、腐败造成植物泌氧能力下降,故微生物活性较差,从而影响了湿地的处理效果。因此,及时对湿地植物进行收割,做好维护管理也是保证其稳定运行的重要条件。2)该湿地系统在低温条件下仍能保证一定的净化效果,对COD、TN、

3)3个不同湿地单元的填料样品优势菌门分别以变形菌门、拟杆菌门、酸杆菌门和硝化螺旋菌门为主,其中变形菌门在各样品中均占较大的丰度比例,平均丰度比例高达50%。
4)在12月中下旬时,湿地各项污染物指标的去除率均有所下降。这主要是由于植物在入冬时活性较低甚至发生腐烂,这一现象在植物收割后有明显缓解。
参考文献