2.安徽新华学院城市建设学院,合肥 230088
1.School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
2.School of Urban Construction, Anhui Xinhua University, Hefei 230088, China
将基于亚硝化的全程自养脱氮(CANON)作用的人工快速渗滤(CRI)装置与反硝化除磷(DPR)型CRI装置耦合为基于同步短程硝化、厌氧氨氧化、反硝化和反硝化除磷(SNADPR)作用的复合式人工快速渗滤(H-CRI)系统,探究了其运行性能及微生物学特征。当H-CRI系统按照内循环潮汐流模式连续运行时,反应装置在水力负荷为0.18 m
-N和TP的去除率分别可达(94.39±1.32)%、(97.87±0.43)%、(99.00±0.32)%和(95.96±2.79)%。其中,CANON反应与生物蓄磷作用分别是系统脱氮除磷的主要途径,两者去除的氮磷量分别占H-CRI系统脱氮除磷总量的(72.13±6.12)%和(82.29±5.58)%。结合分子生物学实验结果可知,适宜的耦合模式有助于实现H-CRI系统中好氧氨氧化微生物、厌氧氨氧化菌、反硝化菌和聚磷菌群的有效协作,进而可促进SNADPR反应体系在其中形成并强化,实现对生活污水中有机物及氮磷元素的高效同步去除。
This study was conducted to explore the operation performance and associated microbiological characteristics of a hybrid constructed rapid infiltration (H-CRI) system utilizing the simultaneous partial nitrification, ANAMMOX, denitrification, and denitrifying phosphorus removal (SNADPR) process, which was composed of a constructed rapid infiltration (CRI) device utilizing the completely autotrophic nitrogen removal over nitrite (CANON) process and a CRI device with the denitrifying phosphorus removal (DPR) process. The results showed that, as the H-CRI system was operated according to the internal circulation tidal flow operation mode, the average removal efficiencies of organics, TN,
-N, and TP by the coupling device could reach (94.39±1.32)%, (97.87±0.43)%, (99.00±0.32)%, and (95.96±2.79)% at the hydraulic loading rate (HLR) of 0.18 m
, respectively. Regarding the coupling system, the CANON process and luxury phosphorus uptake by PAOs were the main pathways in nitrogen and phosphorus removal, which accounted for (72.13±6.12)% and (82.29±5.58)% of total nitrogen and phosphorus removal, respectively. In combination with the results of experiments of the molecular biology, the appropriate coupling mode could be conducive to the effective collaboration among four functional microbes [namely aerobic ammonia-oxidizing microorganisms, anaerobic ammonia oxidizing bacteria(AnAOB), denitrifying bacteria, and polyphosphate-accumulating organisms (PAOs)] in the H-CRI system when treating domestic sewage, then promoted the formation and reinforcement of the SNADPR process, which resulted in the simultaneous efficient removal of organics, nitrogen, and phosphorus by the system.
.
Schematic of a H-CRI system utilizing the SNADPR process
Operation mode of a H-CRI system utilizing the SNADPR process
Comparison of the performance of two devices
典型周期内H-CRI系统除磷单元中污染物质量浓度变化
Pollutant concentration variation of contaminants in phosphorus removal unit of the H-CRI system during a typical cycle
典型周期内H-CRI系统脱氮单元中污染物质量浓度变化
Pollutant concentration variation of in nitrogen removal unit of the H-CRI system during a typical cycle
Relative abundance at phylum level in the samples
Relative abundance at genus level in the samples
Nitrogen and phosphorus removal of the samples
Nitrogen and Phosphorus removal pathways in the H-CRI system
[1] | 韩亚鑫. 人工快渗污水处理工艺调研及问题研究[D]. 重庆: 重庆交通大学, 2016. |
[2] | SU C Y, HUANG Z, CHEN M L, et al. Effects of infiltrator structure and hydraulic loading rates on pollutant removal efficiency and microbial community in a modified two-stage constructed rapid infiltration systems treating swine wastewater[J]. Environmental Progress & Sustainable Energy, 2019, 38(6): 1-7. |
[3] | 陈佼, 陆一新, 汪锐, 等. 基质含量对人工快渗滤池厌氧氨氧化脱氮的影响[J]. 水处理技术, 2019, 45(7): 101-106. |
[4] | 陈佼. 人工快渗系统PN-ANAMMOX耦合脱氮性能及机理研究[D]. 成都: 西南交通大学, 2018. |
[5] | WINKLER M K H, STRAKA L. New directions in biological nitrogen removal and recovery from wastewater[J]. Current Opinion in Biotechnology, 2019, 57: 50-55. doi: 10.1016/j.copbio.2018.12.007 |
[6] | WEN D, VALENCIA A, ORDONEZ D, et al. Comparative nitrogen removal via microbial ecology between soil and green sorption media in a rapid infiltration basin for co-disposal of stormwater and wastewater[J]. Environmental Research, 2020, 184: 109338. doi: 10.1016/j.envres.2020.109338 |
[7] | GONG Q, WANG B, GONG X, et al. Anammox bacteria enrich naturally in suspended sludge system during partial nitrification of domestic sewage and contribute to nitrogen removal[J]. Science of the Total Environment, 2021, 787: 147658. doi: 10.1016/j.scitotenv.2021.147658 |
[8] | SU C Y, ZHU X W, SHI X W, et al. Removal efficiency and pathways of phosphorus from wastewater in a modified constructed rapid infiltration system[J]. Journal of Cleaner Production, 2020, 267: 122063. doi: 10.1016/j.jclepro.2020.122063 |
[9] | 赵伟华, 李健伟, 王梅香, 等. 前置A2NSBR系统硝化和反硝化除磷的特性[J]. 中国环境科学, 2019, 39(11): 4660-4665. doi: 10.3969/j.issn.1000-6923.2019.11.022 |
[10] | ZENG W, LI B X, WANG X D, et al. Integration of denitrifying phosphorus removal via nitrite pathway, simultaneous nitritation-denitritation and anammox treating carbon-limited municipal sewage[J]. Bioresource Technology, 2014, 172: 356-364. doi: 10.1016/j.biortech.2014.09.061 |
[11] | XU X, QIU L, WANG C, et al. Achieving mainstream nitrogen and phosphorus removal through simultaneous partial nitrification, anammox, denitrification, and denitrifying phosphorus removal (SNADPR) process in a single-tank integrative reactor[J]. Bioresource Technology, 2019, 284: 80-89. doi: 10.1016/j.biortech.2019.03.109 |
[12] | 靳慧征, 王振, 丁亚男. 排水速率对潮汐流人工湿地中CANON作用的强化[J]. 中国环境科学, 2018, 38(6): 2182-2192. doi: 10.3969/j.issn.1000-6923.2018.06.021 |
[13] | 王振, 齐冉, 李莹莹, 等. 潮汐流人工湿地中生物蓄磷的强化及其稳定性[J]. 中国环境科学, 2017, 37(2): 534-542. doi: 10.3969/j.issn.1000-6923.2017.02.017 |
[14] | 国家环境保护总局. 水和废水监测分析方法[M]. 北京: 中国环境科学出版社, 2002: 227-285. |
[15] | 高瑶远, 彭永臻, 包鹏, 等. 低溶解氧环境下全程硝化活性污泥的特性[J]. 中国环境科学, 2017, 37(5): 1769-1774. doi: 10.3969/j.issn.1000-6923.2017.05.020 |
[16] | 宋成康, 王亚宜, 韩海成, 等. 温度降低对厌氧氨氧化脱氮效能及污泥胞外聚合物的影响[J]. 中国环境科学, 2016, 36(7): 2006-2013. doi: 10.3969/j.issn.1000-6923.2016.07.015 |
[17] | OEHMEN A, KELLER-LEHMANN B, ZENG R J, et al. Optimisation of poly-β-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems[J]. Journal of Chromatography A, 2005, 1070(1): 131-136. |
[18] | LIN Z Y, WANG Y M, HUANG W, et al. Single-stage denitrifying phosphorus removal biofilter utilizing intracellular carbon source for advanced nutrient removal and phosphorus recovery[J]. Bioresource Technology, 2019, 277: 27-36. doi: 10.1016/j.biortech.2019.01.025 |
[19] | 国家环境保护总局. 土壤农化分析[M]. 北京: 中国环境科学出版社, 1986: 66-70. |
[20] | 时霞. 基于微氧调控的建筑废料垂直流人工湿地中氮磷迁移转化研究[D]. 济南: 山东大学, 2018. |
[21] | 刘冰, 郑煜铭, 李清飞, 等. 复合人工湿地中反硝化除磷作用的发生及其稳定性[J]. 环境科学, 2019, 40(12): 5401-5410. |
[22] | 王振, 刘超翔, 董健, 等. 人工湿地中除磷填料的筛选及其除磷能力[J]. 中国环境科学, 2013, 33(2): 227-233. doi: 10.3969/j.issn.1000-6923.2013.02.006 |
[23] | NIELSEN M, BOLLMANN A, SLIEKERS O, et al. Kinetics, diffusional limitation and microscale distribution of chemistry and organisms in a CANON reactor[J]. FEMS Microbiology Ecology, 2005, 51(2): 247-256. doi: 10.1016/j.femsec.2004.09.003 |
[24] | 闫媛, 黎力, 王亚宜, 等. 采用高通量测序分析全程自养脱氮(CANON)系统不同脱氮效能下的微生物群落结构[J]. 北京工业大学学报, 2015, 41(10): 1485-1492. |
[25] | BAGCHI S, BISWAS R, NANDY T. Autotrophic ammonia removal processes: Ecology to technology[J]. Critical Reviews in Environmental Science and Technology, 2012, 42(13): 1353-1418. doi: 10.1080/10643389.2011.556885 |
[26] | HU B, ZHENG P, TANG C, et al. Identification and quantification of anammox bacteria in eight nitrogen removal reactors[J]. Water Research, 2010, 44(17): 5014-5020. doi: 10.1016/j.watres.2010.07.021 |
[27] | GONZALEZ-MARTINEZ A, RODRIGUEZ-SANCHEZ A, GARCIA-RUIZ M J, et al. Performance and bacterial community dynamics of a CANON bioreactor acclimated from high to low operational temperatures[J]. Chemical Engineering Journal, 2016, 287: 557-567. doi: 10.1016/j.cej.2015.11.081 |
[28] | 韩文杰, 吴迪, 周家中, 等. CANON生物膜载体储存及活性恢复研究[J]. 中国环境科学, 2020, 40(5): 2062-2072. doi: 10.3969/j.issn.1000-6923.2020.05.024 |
[29] | YUAN Y, LIU J, MA B, et al. Improving municipal wastewater nitrogen and phosphorous removal by feeding sludge fermentation products to sequencing batch reactor (SBR)[J]. Bioresource Technology, 2016, 222: 326-334. doi: 10.1016/j.biortech.2016.09.103 |
[30] | HUANG Y. Detection of polyhydroxyalkanoate-accumulating bacteria from domestic wastewater treatment plant using highly sensitive PCR primers[J]. Journal of Microbiology and Biotechnology, 2012, 22(8): 1141-1147. doi: 10.4014/jmb.1111.11040 |
[31] | FIGDORE B A, STENSEL H D, WINKLER M H. Comparison of different aerobic granular sludge types for activated sludge nitrification bioaugmentation potential[J]. Bioresource Technology, 2018, 251: 189-196. doi: 10.1016/j.biortech.2017.11.004 |
[32] | LIU H, WANG Q, SUN Y, et al. Isolation of a non-fermentative bacterium, Pseudomonas aeruginosa, using intracellular carbon for denitrification and phosphorus-accumulation and relevant metabolic mechanisms[J]. Bioresource Technology, 2016, 211: 6-15. doi: 10.1016/j.biortech.2016.03.051 |
[33] | WANG L, LIU J, OEHMEN A, et al. Butyrate can support PAOs but not GAOs in tropical climates[J]. Water Research, 2021, 193: 116884. doi: 10.1016/j.watres.2021.116884 |
[34] | BI Z, TAKEKAWA M, PARK G, et al. Effects of the C/N ratio and bacterial populations on nitrogen removal in the simultaneous anammox and heterotrophic denitrification process: Mathematic modeling and batch experiments[J]. Chemical Engineering Journal, 2015, 280: 606-613. doi: 10.1016/j.cej.2015.06.028 |
[35] | WANG D, WANG G W, YANG F L, et al. Treatment of municipal sewage with low carbon-to-nitrogen ratio via simultaneous partial nitrification, anaerobic ammonia oxidation, and denitrification (SNAD) in a non-woven rotating biological contactor[J]. Chemosphere, 2018, 208: 854-861. doi: 10.1016/j.chemosphere.2018.06.061 |
[36] | ZHENG X, SUN P, HAN J, et al. Inhibitory factors affecting the process of enhanced biological phosphorus removal (EBPR): A mini-review[J]. Process Biochemistry, 2014, 49(12): 2207-2213. doi: 10.1016/j.procbio.2014.10.008 |
[37] | 汪文飞, 王若凡, 王煜钧, 等. 潜流湿地填料比选及对氨氮的去除效应研究[J]. 环境污染与防治, 2020, 42(7): 864-868. |
[38] | 邱林远. SNADPR工艺脱氮除磷性能及其微生物群落研究[D]. 大连: 大连理工大学, 2019: 15-16. |
[39] | ZHANG M J, QIAO S, SHAO D H, et al. Simultaneous nitrogen and phosphorus removal by combined anammox and denitrifying phosphorus removal process[J]. Journal of Chemical Technology and Biotechnology, 2018, 93(1): 94-104. doi: 10.1002/jctb.5326 |
[40] | HE Q, SONG Q, ZHANG S, et al. Simultaneous nitrification, denitrification and phosphorus removal in an aerobic granular sequencing batch reactor with mixed carbon sources: Reactor performance, extracellular polymeric substances and microbial successions[J]. Chemical Engineering Journal, 2018, 331: 841-849. doi: 10.1016/j.cej.2017.09.060 |