Development and application of emergency treatment process for polluted river water caused by leakage of tailing pond of Luming mining in Heilongjiang Province on March 28
CHEN Sili, CHANG Sha, HUANG Dawei, ZHANG Zhengke, HU Licai, GUO Qingwei, South China Institute of Environmental Sciences, Ministry of Ecology and Environment(Research Institute of Eco-environmental Emergency, Ministry of Ecology and Environment), Guangzhou 510530, China
Abstract:Leakage of tailing pond of the Luming mine in Heilongjiang Province is the largest and most difficult emergency water pollution incident in China in the past two decades. After the incident, the emergency team immediately went to the incident site to carry out emergency treatment work. After a lab-scale experiment, the turbidity and molybdenum removal effects were investigated via four different chemical combination processes (PAC-PAM, PAFC-PAM, PAM-PAC, PAM-PAFC), and finally chose 10 mg·L?1 PAM and 300 mg·L?1 PAFC combination process to treat the contaminated river water. According to the overall strategy of opening up “two battlefields” and implementing “two major projects” established by the headquarters, “control engineering” was implemented in the more polluted Yijimi River and “cleaning process” was implemented in Hulan River by means of five-level dosing. After 20 days of work, the molybdenum content of the polluted river water reached the standard and the predefined emergency target was successfully achieved. Key words:tailing pond leakage/ emergency treatment/ polyacrylamide(PAM)/ poly aluminum ferric chloride(PAFC).
图1各种组合工艺效果图 Figure1.The removal performance of Mo and turbidity by different combined coagulation processes
表13·28黑龙江鹿鸣矿业尾矿库泄漏事故污染河水各监测断面水质 Table1.Polluted river water qualities at the monitored cross-sections after the leakage of the Luming mine in Heilongjiang province
检测指标
测定值
单位
评价标准
依吉密河上游(背景)
尾矿库
太平桥
水源地
二股
创业
pH
7.64
7.92
8.19
7.91
7.88
8.11
无量纲
6~9
浊度
10
10 000
10 000
10 000
10 000
100 000
NTU
?
铜
0.002
0.002
0.008
0.008
0.011
0.011
mg·L?1
1
锌
0.05
0.05
0.05
0.05
0.05
0.05
mg·L?1
1
镉
0.000 1
0.000 1
0.0001
0.000 1
0.0001
0.000 1
mg·L?1
0.005
六价铬
0.004
0.004
0.004
0.004
0.004
0.004
mg·L?1
0.05
铅
0.002
0.002
0.002
0.002
0.002
0.002
mg·L?1
0.05
砷
0.000 3
0.000 3
0.000 3
0.002 35
0.0093
0.001
mg·L?1
0.05
汞
0.000 04
0.000 04
0.000 04
0.000 04
0.00004
0.000 04
mg·L?1
0.000 1
钼
0.045
1.8
1.93
1.97
1.83
1.47
mg·L?1
0.07
检测指标
测定值
单位
评价标准
依吉密河上游(背景)
尾矿库
太平桥
水源地
二股
创业
pH
7.64
7.92
8.19
7.91
7.88
8.11
无量纲
6~9
浊度
10
10 000
10 000
10 000
10 000
100 000
NTU
?
铜
0.002
0.002
0.008
0.008
0.011
0.011
mg·L?1
1
锌
0.05
0.05
0.05
0.05
0.05
0.05
mg·L?1
1
镉
0.000 1
0.000 1
0.0001
0.000 1
0.0001
0.000 1
mg·L?1
0.005
六价铬
0.004
0.004
0.004
0.004
0.004
0.004
mg·L?1
0.05
铅
0.002
0.002
0.002
0.002
0.002
0.002
mg·L?1
0.05
砷
0.000 3
0.000 3
0.000 3
0.002 35
0.0093
0.001
mg·L?1
0.05
汞
0.000 04
0.000 04
0.000 04
0.000 04
0.00004
0.000 04
mg·L?1
0.000 1
钼
0.045
1.8
1.93
1.97
1.83
1.47
mg·L?1
0.07
下载: 导出CSV 表2各组合工艺药剂投加种类及投加量批次 Table2.The different chemicals and relevant dosage for different combined coagulation processes
mg·L?1
组合工艺
药剂名称
批次1
批次2
批次3
批次4
批次5
批次6
批次7
批次8
PAC-PAM
PAC
100
100
200
200
300
300
400
400
PAM
5
10
5
10
5
10
5
10
PAFC-PAM
PAFC
100
100
200
200
300
300
400
400
PAM
5
10
5
10
5
10
5
10
PAM-PAC
PAM
5
10
5
10
5
10
5
10
PAC
100
100
200
200
300
300
400
400
PAM-PAFC
PAM
5
10
5
10
5
10
5
10
PAFC
100
100
200
200
300
300
400
400
mg·L?1
组合工艺
药剂名称
批次1
批次2
批次3
批次4
批次5
批次6
批次7
批次8
PAC-PAM
PAC
100
100
200
200
300
300
400
400
PAM
5
10
5
10
5
10
5
10
PAFC-PAM
PAFC
100
100
200
200
300
300
400
400
PAM
5
10
5
10
5
10
5
10
PAM-PAC
PAM
5
10
5
10
5
10
5
10
PAC
100
100
200
200
300
300
400
400
PAM-PAFC
PAM
5
10
5
10
5
10
5
10
PAFC
100
100
200
200
300
300
400
400
下载: 导出CSV 表3东兴渠首和3#坝投加药剂相关参数 Table3.Parameters of chemical dosage on Dongxing canal and 3# dam
序号
投加药剂
累计投加量/t
平均投加量 /(t·h?1)
投加时间段
1
PAM(0.3%)
15.3
0.074
4月4日8时至4月12日24时
2
PAFC
固体797,液体663
80
4月4日10时至4月9日0时
3
PAFC
固体797,液体663
20
4月9日0时至4月12日24时
序号
投加药剂
累计投加量/t
平均投加量 /(t·h?1)
投加时间段
1
PAM(0.3%)
15.3
0.074
4月4日8时至4月12日24时
2
PAFC
固体797,液体663
80
4月4日10时至4月9日0时
3
PAFC
固体797,液体663
20
4月9日0时至4月12日24时
下载: 导出CSV 表4各应急处置工程点投加药剂相关参数 Table4.Parameters of chemical dosages at different emergency disposal sites
ZOUBOULIS A I, MOUSSAS P A, VASILAKOU F. Polyferric sulphate: Preparation, characterisation and application in coagulation experiments[J]. Journal of Hazardous Materials, 2008, 155(3): 459-468. doi: 10.1016/j.jhazmat.2007.11.108
[8]
CUI J, JING C, CHE D, et al. Groundwater arsenic removal by coagulation using ferric(III) sulfate and polyferric sulfate: A comparative and mechanistic study[J]. Journal of Environmental Sciences, 2015, 32: 42-53. doi: 10.1016/j.jes.2014.10.020
[9]
BAI B, ZHOU J, YIN M. A comprehensive review of polyacrylamide polymer gels for conformance control[J]. Petroleum Exploration and Development, 2015, 42(4): 525-532. doi: 10.1016/S1876-3804(15)30045-8
Development and application of emergency treatment process for polluted river water caused by leakage of tailing pond of Luming mining in Heilongjiang Province on March 28
South China Institute of Environmental Sciences, Ministry of Ecology and Environment(Research Institute of Eco-environmental Emergency, Ministry of Ecology and Environment), Guangzhou 510530, China Received Date: 2021-01-14 Accepted Date: 2021-05-31 Available Online: 2021-09-23 Keywords:tailing pond leakage/ emergency treatment/ polyacrylamide(PAM)/ poly aluminum ferric chloride(PAFC) Abstract:Leakage of tailing pond of the Luming mine in Heilongjiang Province is the largest and most difficult emergency water pollution incident in China in the past two decades. After the incident, the emergency team immediately went to the incident site to carry out emergency treatment work. After a lab-scale experiment, the turbidity and molybdenum removal effects were investigated via four different chemical combination processes (PAC-PAM, PAFC-PAM, PAM-PAC, PAM-PAFC), and finally chose 10 mg·L?1 PAM and 300 mg·L?1 PAFC combination process to treat the contaminated river water. According to the overall strategy of opening up “two battlefields” and implementing “two major projects” established by the headquarters, “control engineering” was implemented in the more polluted Yijimi River and “cleaning process” was implemented in Hulan River by means of five-level dosing. After 20 days of work, the molybdenum content of the polluted river water reached the standard and the predefined emergency target was successfully achieved.