上海创蓝检测技术有限公司, 上海 200233
Shanghai Chuanglan Testing Technology Co., Ltd, Shanghai 200233, China
燃煤电厂烟气中可凝结颗粒物(CPM)主要由无机成分组成,其排放会影响大气环境。为有效捕集烟气中CPM并研究其无机组分排放特性,采用自主优化设计的CPM采样装置,就国家大气污染防治重点区域内3台600 MW等级以上超低排放燃煤机组开展了烟气中CPM实测研究,同时对采样装置的有效性、可靠性进行了探讨。该装置利用半导体材料进行制冷,与常规采样装置相比体积轻巧、便于携带、捕集效率高、冷凝效果好,且使用成本低。研究结果表明:燃煤电厂中A、B、C 3个机组烟囱排口的CPM质量浓度分别为2.22、3.02、3.83 mg·m
产生硫酸氢铵和硫酸铵;而硫酸氢铵易与烟气中的水蒸气结合形成酸雾,会腐蚀烟气管道,还会因其黏附性较强附着飞灰等杂质在管道表面沉积附着,加剧管道的腐蚀和结垢。本研究结果可为探究超低排放燃煤电厂烟气中CPM的排放特性提供参考。
The environmental impact of the Condensable Particulate Matter (CPM) emission, in flue gas, from coal-fired power plants is innegligible. However, the CPM collection methods existed are not well suited to the actual situation of the fixed stationary source within the country. Inorganic component is the main component of CPM. In order to capture CPM in flue gas effectively and study its inorganic components emission characteristics, we adopted the self-designed CPM sampling device to carry out the CPM measurement research in flue gas, and at the same time, the effectiveness and reliability of this CPM sampling device are discussed. The test objects are three ultra-low emission coal-fired power plants in the national key field of air pollution prevention and control. The CPM sampling device uses semiconductor materials for refrigeration, which has light in size, easy to carry, high collecting efficiency, good condensation effect, and low cost compared with the conventional sampling device. The study shows that the CPM concentration at the chimneys of A, B and C coal-fired power plants is 2.22, 3.02 and 3.83 mg·m
. The anions in CPM inorganic water-soluble ions, are mainly SO
. The mass concentration of SO
accounts for more than 50%. In the presence of SO
, ammonium hydrogen sulfate and ammonium sulfate will be produced when the water vapor is present with NH
. Ammonium hydroxide is easy to combine with the water vapor in the flue gas to form acid mist, which will not only cause corrosion to the flue gas pipeline, but also fly ash and other impurities because of its strong adhesion. The deposition and attachment on the surface of the pipeline will aggravate the corrosion and scaling of the pipeline. Therefore, it is of great significance to study the effective capture and emission characteristics of CPM in coal-fired power plants.
.
Diagram of sampling device
Schematic diagram of semiconductor refrigeration
Emission of CPM and FPM of different units
Concentration of inorganic water-soluble ion in CPM
Distribution of CPM inorganic water-soluble ions in flue gas of each unit
[1] | 国家环境保护局. 固定污染源排气中颗粒物测定与气态污染物采样方法: GB/T 16157-1996[S/OL]. 1996. [2020-10-08]. https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/199603/t19960306_67508.shtml. |
[2] | 环境保护部. 固定污染源废气 低浓度颗粒物的测定 重量: HJ 836-2017[S/OL]. 2017. [2020-10-08]. https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201801/t20180108_429326.shtml. |
[3] | US. EPA. Method 202: Dry impinger method for determining condensable particulate emissions from stationary sources[S/OL]. [2020-10-08]. The Federal Register/FIND, 2017, 82(173). https://www.epa.gov/emc/proposed-revisions-method-202. |
[4] | 裴冰. 燃煤电厂可凝结颗粒物的测试与排放[J]. 环境科学, 2015, 36(5): 1544-1549. |
[5] | FENG Y, LI Y, CUI L. Critical review of condensable particulate matter[J]. Fuel, 2018, 224: 801-813. doi: 10.1016/j.fuel.2018.03.118 |
[6] | CORIO L A, SHERWELL J. In-stack condensible particulate matter measurements and issues[J]. Journal of the Air & Waste Management Association, 2000, 50(2): 207-218. |
[7] | LI J, QI Z, LI M, et al. Physical and chemical characteristics of condensable particulate matter from an ultralow-emission coal-fired power plant[J]. Energy & Fuels, 2017, 31(2): 1778-1785. |
[8] | YANG H H, LEE K T, HSIEH Y S, et al. Filterable and condensable fine particulate emissions from stationary sources[J]. Aerosol and Air Quality Research, 2014, 14(7): 2010-2016. doi: 10.4209/aaqr.2014.08.0178 |
[9] | 李小龙, 朱法华, 段玖祥, 等. 固定污染源排放可凝结颗粒物研究进展[J]. 化工进展, 2019, 38(11): 5091-5102. |
[10] | 裴冰. 固定源排气中可凝结颗粒物排放与测试探讨[J]. 中国环境监测, 2010, 26(6): 9-12. doi: 10.3969/j.issn.1002-6002.2010.06.004 |
[11] | 蒋靖坤, 邓建国, 王刚, 等. 固定污染源可凝结颗粒物测量方法[J]. 环境科学, 2019, 40(12): 5234-5239. |
[12] | BHANARKAR A D, GAVANE A G, TAJNE D S, et al. Composition and size distribution of particules emissions from a coal-fired power plant in India[J]. Fuel, 2008, 87(10): 2095-2101. |
[13] | GOODARZI F. Corrigendum to “characteristics and composition of fly ash from canadian coal-fired power plants”[J]. Fuel, 2006, 85(10/11): 1418-1427. |
[14] | 林治卿, 袭著革, 杨丹凤, 等. PM2.5的污染特征及其生物效应研究进展[J]. 解放军预防医学杂志, 2005, 23(2): 150-152. doi: 10.3969/j.issn.1001-5248.2005.02.031 |
[15] | LI J, LI X, ZHOU C, et al. Study on the influencing factors of the distribution characteristics of polycyclic aromatic hydrocarbons in condensable particulate matter[J]. Energy & Fuels, 2017, 31(12): 13233-13238. |
[16] | LI J, LI X, ZHOU C, et al. Correlation between polycyclic aromatic hydrocarbon concentration and particulate matter during the removal process of a low-low temperature electrostatic precipitator[J]. Energy & Fuels, 2017, 31(7): 7256-7262. |
[17] | TAN B, WANG L, ZHANG X. The effect of an external DC electric field on bipolar charged aerosol agglomeration[J]. Journal of Electrostatics, 2007, 65(2): 82-86. doi: 10.1016/j.elstat.2006.07.002 |
[18] | 于洋, 周欣, 程俊峰, 等. 燃煤电厂可凝结颗粒物检测方法、排放特征及脱除技术研究进展[J]. 化工进展, 2021, 40(8): 4515-4524. |
[19] | 李兴华, 段雷, 郝吉明, 等. 固定燃烧源颗粒物稀释采样系统的研制与应用[J]. 环境科学学报, 2008, 28(3): 458-463. doi: 10.3321/j.issn:0253-2468.2008.03.008 |
[20] | 周楠, 曾立民, 于雪娜, 等. 固定源稀释通道的设计和外场测试研究[J]. 环境科学学报, 2006, 26(5): 764-472. doi: 10.3321/j.issn:0253-2468.2006.05.011 |
[21] | TSUKADA M, HORIKAWA A, SUGIMOTO K, et al. Emission behavior of condensable suspended particulate matter from a laboratory scale rdf fluidized bed combustor[J]. Journal of Chemical Engineering of Japan, 2007, 40(10): 869-873. doi: 10.1252/jcej.05SI115 |
[22] | 杨柳, 张斌, 王康慧, 等. 超低排放路线下燃煤烟气可凝结颗粒物在WFGD、WESP中的转化特性[J]. 环境科学, 2019, 40(1): 121-125. |
[23] | 沈志刚, 戴璞, 杨志林, 等. 可凝结颗粒物CPM采样设备: CN206990280U[P]. 2018-02-09. |
[24] | 贾艳婷, 徐昌贵, 闫献国, 等. 半导体制冷研究综述[J]. 制冷, 2012, 31(1): 49-55. doi: 10.3969/j.issn.1005-9180.2012.01.010 |
[25] | 李冰. 半导体制冷技术及其发展[J]. 山西科技, 2009(4): 95-101. doi: 10.3969/j.issn.1004-6429.2009.04.049 |
[26] | 徐昌贵, 贾艳婷, 闫献国, 等. 半导体制冷技术及其应用[J]. 机械工程与自动化, 2012(3): 209-211. doi: 10.3969/j.issn.1672-6413.2012.03.087 |
[27] | 冯玉鹏. 典型煤种在沉降炉中燃烧可凝结颗粒物排放特性研究[D]. 青岛: 山东大学, 2020. |
[28] | 胡月琪, 马召辉, 冯亚君, 等. 北京市燃煤锅炉烟气中水溶性离子排放特征[J]. 环境科学, 2015, 36(6): 1966-1974. |
[29] | 沈志刚, 刘启贞, 陶雷行, 等. 湿式电除尘器对烟气中颗粒物的去除特性[J]. 环境工程学报, 2016, 10(5): 2557-2561. doi: 10.12030/j.cjee.201412096 |
[30] | YANG H H, LEE K T, HSIEH Y S, et al. Emission characteristics and chemical compositions of both filterable and condensable fine particulate from steel plants[J]. Aerosol and Air Quality Research, 2015, 15(4): 1672-1680. doi: 10.4209/aaqr.2015.06.0398 |
[31] | YANG H H, ARAFATH S M, LEE K T, et al. Chemical characteristics of filterable and condensable PM2.5 emissions from industrial boilers with five different fuels[J]. Fuel, 2018, 232: 415-422. doi: 10.1016/j.fuel.2018.05.080 |
[32] | 孙和泰, 黄治军, 华伟, 等. 超低排放燃煤电厂可凝结颗粒物排放特性[J/OL]. 洁净煤技术, 1-7 [2020-11-23]. http://kns.cnki.net/kcms/detail/11.3676.TD.20200706.1109.002.html. |
[33] | WEN C, GAO X, YU Y, et al. Emission of inorganic PM10 from included mineral matter during the combustion of pulverized coals of various ranks[J]. Fuel, 2015, 140: 526-530. doi: 10.1016/j.fuel.2014.09.114 |
[34] | BAO J, MAO L, ZHANG Y, et al. Effect of selective catalytic reduction system on fine particle emission characteristics[J]. Energy & Fuels, 2016, 30(2): 1325-1334. |
[35] | 尹子骏, 苏胜, 王中辉, 等. 燃煤烟气中SO3与NH4HSO4生成特性及其控制方法研究进展[J]. 化工进展, 2021, 40(4): 2328-2337. |
[36] | 高瑞飞, 翟鹏霄, 田明. 燃煤电厂烟气脱硝氨逃逸的分析与研究[J]. 辽宁化工, 2020, 49(10): 1272-1273. doi: 10.3969/j.issn.1004-0935.2020.10.024 |
[37] | 张倩. 吸收塔浆液氯离子超标原因分析及控制措施[J]. 电子技术与软件工程, 2017(17): 144. |