删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

流通式电芬顿系统对地下水中As(Ⅲ)的高效去除

本站小编 Free考研考试/2021-12-31

柴友正1,2,,
秦普丰1,2,
吴志斌1,
张嘉超1,
陈安伟1,,,
白马1,
彭程1
1.湖南农业大学资源环境学院,长沙 410128
2.湖南省灌溉水源水质污染净化技术工程研究中心,长沙 410128
作者简介: 柴友正(1995—),男,博士研究生。研究方向:矿山废水与地下水污染控制。E-mail:chaiyouzheng@126.com.
通讯作者: 陈安伟,A.Chen@hunau.edu.cn ;

中图分类号: X703


High efficiency removal of As (Ⅲ) in groundwater by a flow through electro-Fenton system

CHAI Youzheng1,2,,
QIN Pufeng1,2,
WU Zhibin1,
ZHANG Jiachao1,
CHEN Anwei1,,,
BAI Ma1,
PENG Cheng1
1.College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
2.Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, China
Corresponding author: CHEN Anwei,A.Chen@hunau.edu.cn ;

CLC number: X703

-->

摘要
HTML全文
(11)(0)
参考文献(42)
相关文章
施引文献
资源附件(0)
访问统计

摘要:为了高效处理地下水中的As(Ⅲ),设计了一种流通式电芬顿处理系统,考察了电流密度、pH、曝气速率、流速、电解质浓度以及共存离子等关键因素对As(Ⅲ)去除率的影响。此外,对电芬顿体系中As(III)的去除机理进行了分析,并对该系统在连续运行下的处理效果进行了评估。结果表明:在最佳反应条件下(电流密度为7.6 mA·cm?2、pH为6、流速为20 mL·min?1、曝气速率为80 mL·min?1、电解质浓度为100 mg·L?1),地下水中As(Ⅲ)的去除率接近100%,该系统可以在近中性的pH范围内发挥作用;在连续运行条件下,该系统能够保持良好的处理稳定性;在电芬顿反应体系中,·OH和HO2·能够共同促进As(III)的去除。水体中生成的As(Ⅴ)、Ni、Fe等能够在流通式系统中被过滤器有效地拦截,避免了二次污染的发生,污染水体得到净化。以上结果可为流通式电芬顿系统处理含As(Ⅲ)的地下水提供参考。
关键词: 地下水/
As(Ⅲ)/
流通式电芬顿/
去除机理/
连续运行

Abstract:In order to provide a new solution for the efficient removal of As(Ⅲ) in groundwater, a flow-through electro-Fenton system was proposed in this study. The effects of key factors such as current density, pH, aeration rate, flow rate, electrolyte concentration, and coexisting ions on the removal efficiency of As(Ⅲ) were investigated. In addition, the As(Ⅲ) removal mechanism by the electro-Fenton system was analyzed, and the treatment effect of this system under continuous operation conditions was evaluated. The results showed that the removal efficiency of As(Ⅲ) in groundwater could reach nearly 100% under optimum conditions (current density of 7.6 mA·cm?2, pH 6, flow rate of 20 mL·min?1, aeration rate of 80 mL/min, electrolyte concentration of 100 mg·L?1). This system could have an important performance across a near-neutral pH range, and it could maintain good treatment stability under continuous running conditions. The mechanism studies indicated that ·OH and HO2· could promote As(Ⅲ) removal together by the electro-Fenton system. Moreover, the As(Ⅴ), Ni, Fe generated in this process could be effectively intercepted by the filter in the flow-through system, and the occurrence of secondary pollution was avoided, then the wastewater was purified. The above results could provide references for the efficient treatment of groundwater containing As(Ⅲ) by the flow-through electro-Fenton system.
Key words:groundwater/
As(Ⅲ)/
flow-through electro-Fenton/
removal mechanism/
continuous operation.

加载中

图1流通式电芬顿反应装置
Figure1.Device diagram of flow-through electro-Fenton reaction


下载: 全尺寸图片幻灯片


图2流通式系统各项性能的对比
Figure2.Comparison of various performance of flow-through system


下载: 全尺寸图片幻灯片


图3电流密度对As(Ⅲ)去除率的影响
Figure3.Effect of current density on removal efficiency of As(Ⅲ)


下载: 全尺寸图片幻灯片


图4pH对As(Ⅲ)去除率的影响
Figure4.Effect of pH on As(Ⅲ) removal efficiency


下载: 全尺寸图片幻灯片


图5流速对As(Ⅲ)去除率的影响
Figure5.Effect of flow rate on As(Ⅲ) removal efficiency


下载: 全尺寸图片幻灯片


图6曝气速率对As(Ⅲ)去除率的影响
Figure6.Effect of aeration rate on As(Ⅲ) removal efficiency


下载: 全尺寸图片幻灯片


图7电解质质量浓度对As(Ⅲ)去除率的影响
Figure7.Effect of electrolyte mass concentration on As(Ⅲ) removal efficiency


下载: 全尺寸图片幻灯片


图8连续运行下As(Ⅲ)去除率变化
Figure8.Change of As(Ⅲ) removal efficiency under continuous operation conditions


下载: 全尺寸图片幻灯片


图9不同淬灭剂对As(Ⅲ)去除率的影响
Figure9.Effect of different capture agents on As(Ⅲ) removal efficiency


下载: 全尺寸图片幻灯片


图10电芬顿系统中As(Ⅲ)的去除机理
Figure10.Removal mechanism of As(Ⅲ) in electro-Fenton system


下载: 全尺寸图片幻灯片


图11As(Ⅲ)、As(Ⅴ)、As、Ni、Fe的质量浓度变化
Figure11.Mass concentration changes in As(Ⅲ), As(Ⅴ), As, Ni and Fe


下载: 全尺寸图片幻灯片


[1] CHAKRABORTI D, RAHMAN M M, DAS B, et al. Groundwater arsenic contamination and its health effects in India[J]. Hydrogeology Journal, 2017, 25(4): 1165-1181. doi: 10.1007/s10040-017-1556-6
[2] GILHOTRA V, DAS L, SHARMA A, et al. Electrocoagulation technology for high strength arsenic wastewater: Process optimization and mechanistic study[J]. Journal of Cleaner Production, 2018, 198: 693-703. doi: 10.1016/j.jclepro.2018.07.023
[3] UNGUREANU G, SANTOS S, BOAVENTURA R, et al. Arsenic and antimony in water and wastewater: Overview of removal techniques with special reference to latest advances in adsorption[J]. Journal of Environmental Management, 2015, 151: 326-342.
[4] NEPPOLIAN B, DORONILA A, ASHOKKUMAR M. Sonochemical oxidation of arsenic(III) to arsenic(V) using potassium peroxydisulfate as an oxidizing agent[J]. Water Research, 2010, 44(12): 3687-3695. doi: 10.1016/j.watres.2010.04.003
[5] 彭映林, 肖斌. 两级中和-铁盐沉淀法处理高砷废水[J]. 工业水处理, 2016, 36(6): 64-68. doi: 10.11894/1005-829x.2016.36(6).016
[6] CUI J, JING C, CHE D, et al. Groundwater arsenic removal by coagulation using ferric(III) sulfate and polyferric sulfate: A comparative and mechanistic study[J]. Journal Environmental Science (China), 2015, 32: 42-53. doi: 10.1016/j.jes.2014.10.020
[7] BORA A J, GOGOI S, BARUAH G, et al. Utilization of co-existing iron in arsenic removal from groundwater by oxidation-coagulation at optimized pH[J]. Journal of Environmental Chemical Engineering, 2016, 4(3): 2683-2691. doi: 10.1016/j.jece.2016.05.012
[8] CAO C Y, QU J, YAN W S, et al. Low-cost synthesis of flowerlike alpha-Fe2O3 nanostructures for heavy metal ion removal: Adsorption property and mechanism[J]. Langmuir, 2012, 28(9): 4573-4579. doi: 10.1021/la300097y
[9] LI W G, GONG X J, WANG K, et al. Adsorption characteristics of arsenic from micro-polluted water by an innovative coal-based mesoporous activated carbon[J]. Bioresource Technology, 2014, 165: 166-173. doi: 10.1016/j.biortech.2014.02.069
[10] LEE C G, ALVAREZ P J J, NAM A, et al. Arsenic(V) removal using an amine-doped acrylic ion exchange fiber: Kinetic, equilibrium, and regeneration studies[J]. Journal of Hazardous Materials, 2017, 325: 223-229. doi: 10.1016/j.jhazmat.2016.12.003
[11] AN B, LIANG Q, ZHAO D. Removal of arsenic(V) from spent ion exchange brine using a new class of starch-bridged magnetite nanoparticles[J]. Water Research, 2011, 45(5): 1961-1972. doi: 10.1016/j.watres.2011.01.004
[12] MOHAPATRA B, SARKAR A, JOSHI S, et al. An arsenate-reducing and alkane-metabolizing novel bacterium, Rhizobium arsenicireducens sp. nov., isolated from arsenic-rich groundwater[J]. Archives of Microbiology, 2016, 199(2): 191-201.
[13] HUANG A, TEPLITSKI M, RATHINASABAPATHI B, et al. Characterization of arsenic-resistant bacteria from the rhizosphere of arsenic hyperaccumulator Pteris vittata[J]. Canadian Journal of Microbiology, 2010, 56(3): 236-246. doi: 10.1139/W10-005
[14] LI L, VAN GENUCHTEN C M, ADDY S E, et al. Modeling As(III) oxidation and removal with iron electrocoagulation in groundwater[J]. Environmental Science & Technology, 2012, 46(21): 12038-12045.
[15] QIAN A, YUAN S, ZHANG P, et al. A new mechanism in electrochemical process for arsenic oxidation: Production of H2O2 from anodic O2 reduction on the cathode under automatically developed alkaline conditions[J]. Environmental Science & Technology, 2015, 49(9): 5689-5696.
[16] GUDE J C J, RIETVELD L C, VAN HALEM D. As(III) oxidation by MnO2 during groundwater treatment[J]. Water Research, 2017, 111: 41-51. doi: 10.1016/j.watres.2016.12.041
[17] SORLINI S, GIALDINI F. Conventional oxidation treatments for the removal of arsenic with chlorine dioxide, hypochlorite, potassium permanganate and monochloramine[J]. Water Research, 2010, 44(19): 5653-5659. doi: 10.1016/j.watres.2010.06.032
[18] 吕杰婵, 窦远明, 孙猛, 等. 感应电芬顿降解二甲基砷的效果与机理研究[J]. 环境科学学报, 2017, 37(6): 2152-2157.
[19] LAN H, LI J, SUN M, et al. Efficient conversion of dimethylarsinate into arsenic and its simultaneous adsorption removal over FeCx/N-doped carbon fiber composite in an electro-Fenton process[J]. Water Research, 2016, 100: 57-64. doi: 10.1016/j.watres.2016.05.018
[20] ZHANG A Y, HUANG N H, ZHANG C, et al. Heterogeneous Fenton decontamination of organoarsenicals and simultaneous adsorption of released arsenic with reduced secondary pollution[J]. Chemical Engineering Journal, 2018, 344: 1-11. doi: 10.1016/j.cej.2018.03.072
[21] 张煜, 李明玉, 李善得, 等. 直接分光光度法测定高铁酸盐的含量[J]. 无机盐工业, 2011, 43(2): 59-62. doi: 10.3969/j.issn.1006-4990.2011.02.020
[22] ZHU R, YANG C, ZHOU M, et al. Industrial park wastewater deeply treated and reused by a novel electrochemical oxidation reactor[J]. Chemical Engineering Journal, 2015, 260: 427-433. doi: 10.1016/j.cej.2014.09.029
[23] REN G, ZHOU M, LIU M, et al. A novel vertical-flow electro-Fenton reactor for organic wastewater treatment[J]. Chemical Engineering Journal, 2016, 298: 55-67. doi: 10.1016/j.cej.2016.04.011
[24] ?ZCAN A, ATILIR ?ZCAN A, DEMIRCI Y. Evaluation of mineralization kinetics and pathway of norfloxacin removal from water by electro-Fenton treatment[J]. Chemical Engineering Journal, 2016, 304: 518-526. doi: 10.1016/j.cej.2016.06.105
[25] ZHOU W, RAJIC L, CHEN L, et al. Activated carbon as effective cathode material in iron-free electro-Fenton process: Integrated H2O2 electrogeneration, activation, and pollutants adsorption[J]. Electrochim Acta, 2019, 296: 317-326. doi: 10.1016/j.electacta.2018.11.052
[26] GAO G, ZHANG Q, HAO Z, et al. Carbon nanotube membrane stack for flow-through sequential regenerative electro-Fenton[J]. Environmental Science & Technology, 2015, 49(4): 2375-2383.
[27] LI Z, SHEN C, LIU Y, et al. Carbon nanotube filter functionalized with iron oxychloride for flow-through electro-Fenton[J]. Applied Catalysis B: Environmental, 2020, 260: 118204.
[28] MCBEATH S T, GRAHAM N J D. Simultaneous electrochemical oxidation and ferrate generation for the treatment of atrazine: A novel process for water treatment applications[J]. Journal of Hazardous Materials, 2021, 411: 125167. doi: 10.1016/j.jhazmat.2021.125167
[29] HE H, ZHOU Z. Electro-Fenton process for water and wastewater treatment[J]. Critical Reviews in Environmental Science & Technology, 2017, 47(21): 2100-2131.
[30] GUAN W, ZHANG B, TIAN S, et al. The synergism between electro-Fenton and electrocoagulation process to remove Cu-EDTA[J]. Applied Catalysis B: Environmental, 2018, 227: 252-257. doi: 10.1016/j.apcatb.2017.12.036
[31] ZHANG Y, ZUO S, ZHOU M, et al. Removal of tetracycline by coupling of flow-through electro-Fenton and in-situ regenerative active carbon felt adsorption[J]. Chemical Engineering Journal, 2018, 335: 685-692. doi: 10.1016/j.cej.2017.11.012
[32] SANTANA-MARTíNEZ G, ROA-MORALES G, MARTIN DEL CAMPO E, et al. Electro-Fenton and electro-Fenton-like with in situ electrogeneration of H2O2 and catalyst applied to 4-chlorophenol mineralization[J]. Electrochimica Acta, 2016, 195: 246-256. doi: 10.1016/j.electacta.2016.02.093
[33] ZHANG H, WAN X, LI G, et al. A Three-electrode electro-Fenton system supplied by self-generated oxygen with automatic pH-regulation for groundwater remediation[J]. Electrochimica Acta, 2017, 250: 42-48. doi: 10.1016/j.electacta.2017.08.040
[34] LI X, JIN X, ZHAO N, et al. Novel bio-electro-Fenton technology for azo dye wastewater treatment using microbial reverse-electrodialysis electrolysis cell[J]. Bioresource Technology, 2017, 228: 322-329. doi: 10.1016/j.biortech.2016.12.114
[35] BOCOS E, GONZáLEZ-ROMERO E, PAZOS M, et al. Application of electro-Fenton treatment for the elimination of 1-Butyl-3-methylimidazolium triflate from polluted water[J]. Chemical Engineering Journal, 2017, 318: 19-28. doi: 10.1016/j.cej.2016.04.058
[36] KHANDEGAR V, SAROHA A K. Electrocoagulation for the treatment of textile industry effluent: A review[J]. Journal of Environmental Management, 2013, 128: 949-693. doi: 10.1016/j.jenvman.2013.06.043
[37] YOOSEFIAN M, AHMADZADEH S, AGHASI M, et al. Optimization of electrocoagulation process for efficient removal of ciprofloxacin antibiotic using iron electrode; kinetic and isotherm studies of adsorption[J]. Journal of Molecular Liquids, 2017, 225: 544-553. doi: 10.1016/j.molliq.2016.11.093
[38] AHMADZADEH S, DOLATABADI M. Removal of acetaminophen from hospital wastewater using electro-Fenton process[J]. Environmental Earth Sciences, 2018, 77(2): 1-11.
[39] LIU Y, ZHANG J, LIU F, et al. Ultra-rapid detoxification of Sb(III) using a flow-through electro-Fenton system[J]. Chemosphere, 2019, 245: 125604.
[40] 汤茜, 孙娟, 任小蕾, 等. 泡沫镍和泡沫铜阴极电类Fenton氧化降解对硝基酚的比较[J]. 化工进展, 2017, 36(7): 2653-2659.
[41] DENG F, OLVERA-VARGAS H, GARCIA-RODRIGUEZ O, et al. The synergistic effect of nickel-iron-foam and tripolyphosphate for enhancing the electro-Fenton process at circum-neutral pH[J]. Chemosphere, 2018, 201: 687-696. doi: 10.1016/j.chemosphere.2018.02.186
[42] PRAMOD L, GANDHIMATHI R, LAVANYA A, et al. Heterogeneous Fenton process coupled with microfiltration for the treatment of water with higher arsenic content[J]. Chemical Engineering Communications, 2019, 207(12): 1-12.



加载中


Turn off MathJax -->
WeChat 点击查看大图



图( 11)
计量

文章访问数:491
HTML全文浏览数:491
PDF下载数:33
施引文献:0
出版历程

收稿日期:2021-03-10
录用日期:2021-07-01
网络出版日期:2021-09-15
-->刊出日期:2021-08-10




-->








流通式电芬顿系统对地下水中As(Ⅲ)的高效去除

柴友正1,2,,
秦普丰1,2,
吴志斌1,
张嘉超1,
陈安伟1,,,
白马1,
彭程1
通讯作者: 陈安伟,A.Chen@hunau.edu.cn ;
作者简介: 柴友正(1995—),男,博士研究生。研究方向:矿山废水与地下水污染控制。E-mail:chaiyouzheng@126.com 1.湖南农业大学资源环境学院,长沙 410128
2.湖南省灌溉水源水质污染净化技术工程研究中心,长沙 410128
收稿日期: 2021-03-10
录用日期: 2021-07-01
网络出版日期: 2021-09-15
关键词: 地下水/
As(Ⅲ)/
流通式电芬顿/
去除机理/
连续运行
摘要:为了高效处理地下水中的As(Ⅲ),设计了一种流通式电芬顿处理系统,考察了电流密度、pH、曝气速率、流速、电解质浓度以及共存离子等关键因素对As(Ⅲ)去除率的影响。此外,对电芬顿体系中As(III)的去除机理进行了分析,并对该系统在连续运行下的处理效果进行了评估。结果表明:在最佳反应条件下(电流密度为7.6 mA·cm?2、pH为6、流速为20 mL·min?1、曝气速率为80 mL·min?1、电解质浓度为100 mg·L?1),地下水中As(Ⅲ)的去除率接近100%,该系统可以在近中性的pH范围内发挥作用;在连续运行条件下,该系统能够保持良好的处理稳定性;在电芬顿反应体系中,·OH和HO2·能够共同促进As(III)的去除。水体中生成的As(Ⅴ)、Ni、Fe等能够在流通式系统中被过滤器有效地拦截,避免了二次污染的发生,污染水体得到净化。以上结果可为流通式电芬顿系统处理含As(Ⅲ)的地下水提供参考。

English Abstract






--> --> --> 重金属污染一直以来备受关注。砷作为高毒性污染物被广泛认知,矿山开采、冶炼、农业生产、制革、染料、化工等行业生产中往往会产生大量的砷[1-2]。As及其化合物随着径流、入渗等途径进入地下水中,污染水体,并通过不断累积对环境与人体健康造成威胁。在我国,对于砷的排放标准也有着严格的规定[3]。如何有效地处理含As地下水一直以来都是环境工程领域所关注的热点。
As的存在形式及其价态决定了As及其化合物的毒性[4]。As在水体中常以As(Ⅲ)和As(Ⅴ)的形态存在,而在还原条件下的地下水体中,又以As(Ⅲ)为主要存在形态。在目前的地下水As(Ⅲ)污染处理中,中和法[5]、混凝法[6-7]、吸附法[8-9]、离子交换法[10-11]、微生物法[12-13]、电化学法[14-15]均能取得良好的治理效果。但不断寻求提供高效,创新的处理方法,并作为现有地下水As(Ⅲ)污染处理技术的补充或替代仍然是十分必要的。已有研究[16]表明,As(Ⅲ)的毒性比As(Ⅴ)高出数十倍以上,并且迁移性更强,稳定性差,因此,将As(Ⅲ)氧化成更易吸附、稳定的As(Ⅴ)是实现As(Ⅲ)控制的可行途径。SORLINI等[17]研究了二氧化氯、次氯酸盐、高锰酸钾等氧化剂对水体中As的氧化效果,As(Ⅲ)的氧化效率能到达到80%~100%。吕杰蝉等[18]通过感应电芬顿法处理二甲基砷废水,在初始pH为3,电流密度为2 mA·cm?2,初始浓度为5 mg·L?1的条件下,4 h后去除率达到94.4%。LAN等[19]以FeCx/N掺杂的碳纤维复合材料作为催化剂,通过电芬顿反应对含二甲基砷废水进行高效处理,6 h后去除率达到96%。ZHANG等[20]通过非均相芬顿法对畜牧业中的有机砷化合物进行降解,处理3 h后降解率可达到80%以上。尽管对地下水中砷污染处理的研究较少,但这能为我们处理此类地下水提供新的思路,通过强氧化性的羟自由基(·OH)可将As(Ⅲ)氧化为更稳定、毒性低的As(Ⅴ),同时亦可减少使用化学氧化剂带来的风险与成本。
本研究设计了一种新型流通式电芬顿系统,用来处理含As(Ⅲ)地下水。考察了电流强度、pH、流速、曝气速率、电解质浓度等因素对去除效果的影响,并探讨了水体中共存离子的干扰作用及相关的反应机理。此外,对流通式电芬顿系统在连续运行条件下的性能进行了评估,以期为地下水As(Ⅲ)污染的治理提供参考。

本研究以湖南某矿区附近城镇的地下水为例,研究中均使用实际地下水作为处理对象。其水质如下:1.87~2.2 mg·L?1 As(Ⅲ)、0.12 mg·L?1 Fe、120 μg·L?1 Mn、75 mg·L?1 ${\rm{SO}}_4^{2 - }$、33 mg·L?1 COD、pH为6.25。所用试剂均购自国药试剂集团且为分析纯:水杨酸(salicylic acid)、苯醌(benzoquinone)、氯化钾(KCl)、硫酸(H2SO4)、氢氧化钠(NaOH)。实验中所用水均为超纯水(UPH,优普,18.25 MΩ.cm)。

电芬顿反应在亚克力(PMMA)材质的圆柱形反应器(D=60 mm,H=200 mm)中进行,实验装置如图1所示。反应器分为3个部分,阳极为Fe网电极(R=25 mm),阴极为泡沫镍(NF)电极,覆于Ti网上,最下方是活性炭纤维过滤器(ACF),阴阳极通过不锈钢电极夹连接至直流电源(MESTEK DP305)上,并保持恒定距离。将阴极浸泡在地下水中数小时直至饱和后取出再用。通入电流开始反应后,通过蠕动泵(UIP-WIFI-S183, Kamoer)以一定的流速将1 L地下水引入反应器中,通过控制变量对去除率的影响因素进行探究,每组实验设置3组平行。



流通式系统中电流的调控通过直流稳压电源(MASTEK DP305)完成,溶液pH的测定通过pH计(METTLER S220)测定。通过原子荧光法测定溶液中As(Ⅲ)和As(Ⅴ),分别通过丁二酮肟分光光度法与邻菲罗啉分光光度法测定总Ni和总Fe的浓度。通过间接分光光度法测定高铁酸盐的浓度[21]

为了高效去除地下水中的As(Ⅲ),设计了一种流通式电芬顿系统。图2(a)为该系统与其他处理工艺去除效率的对比,即吸附(相同装置,不通电)、电氧化、铁盐絮凝、传统电芬顿法(泡沫镍阴极,铁阳极)。可以看出,在吸附条件下,As(Ⅲ)的浓度变化很小。投入一定量的FeCl3·6H2O且不断搅拌后,As(Ⅲ)的去除率为36%。在电氧化处理后,As(Ⅲ)的去除率约为60%。传统电芬顿法处理中,可以对As(Ⅲ)取得92%的去除率,而通过流通式电芬顿系统处理后,As(Ⅲ)的去除率可以达到99.6%左右。这是由于,与集中处理废水相比,垂直流依次通过电极能够提高污染物的传质效率,并且能减少电极间氧化还原作用的干扰,从而可提高对As(Ⅲ)的去除率[22-23]图2(b)为电化学处理中能耗的对比,可以看出,流通式电芬顿系统的能耗更低,同时,反应中消耗的主要为电能,这避免了化学试剂的消耗,极大地降低了处理成本。



电流密度对电芬顿反应发挥的效用有着至关重要的影响。在电流密度为2.6~15.3 mA·cm?2时,考察了其对去除率的影响。由图3可知,As(Ⅲ)的去除率呈现出先增后减的趋势,在电流密度为7.6 mA·cm?2时(电流强度为150 mA, 电压为3.5 V),As(Ⅲ)的去除率达到最大;当电流密度升至10.2 mA·cm?2 (电流强度为200 mA,电压为4 V)和15.3 mA·cm?2 (电流强度为300 mA,电压为5 V)时,As(Ⅲ)的去除率分别下降至 93.6%和84.5%。这是由于,在一定范围内增大电流密度将提高电极上的电子转移速率,从而促进氧还原反应以及铁的溶解,产生更多的H2O2 ((式(1)~式(3)))。然而,电极上的析氢副反应会在电流密度过高时加剧(式(4)),从而加速电极钝化,同时影响了H2O2的生成[24-25]。因此,在本研究中,当电流密度为7.6 mA·cm?2时能够实现对As(Ⅲ)的高效去除。


溶液pH对处理效果有着重要影响,故对pH为3~9的条件下溶液中As(Ⅲ)的去除情况进行了探究。如图4(a)所示,当pH为6时,去除率达到99.6%,反应速率略低于pH为3时。由于流通式的处理提升了O2浓度,提高了反应效率,使得电芬顿体系在pH较高的条件下仍能保持较高的H2O2生成效率[26-27]。当pH接近中性时,溶液中的铁离子在电流的作用下会形成具有较强氧化性的高铁酸根[28]。如图4(b)所示,在pH为6时溶液中的羟基自由基与高铁酸盐的浓度均较高。此外,较高的pH增强了阳极溶出Fe的絮凝反应,这些因素在一定程度上减轻了pH对流通式系统处理效率的影响。然而,当pH过高时,H2O2的形成将被抑制(式(5)),从而影响·OH的产生[29-30]。以上结果表明,流通式电芬顿系统能在偏酸性的pH下可保持良好的效果,这极大地节省了调节pH的成本,能够广泛用于As(Ⅲ)污染的地下水体。


图5反映了流速(10~50 mL·min?1)对As(Ⅲ)去除率的影响。As(Ⅲ)的去除率随着流速的增加而降低(分别为99.9%、99.6%、90%、83.6%、75%)。这是由于流速决定了地下水的停留时间,当流速较低时,As(Ⅲ)能够被更充分的氧化,并且为目标污染物与过滤器提供了更多的接触时间[31]。然而,较低的流速也意味着较高的能耗,控制合适的流速对As(Ⅲ)的去除较为重要。因此,本研究确定最佳流速为20 mL·min?1


溶解氧含量是限制电芬顿反应的主要因素之一,因此,本实验考察了曝气速率对As(Ⅲ)去除率的影响。如图6所示,As(Ⅲ)的去除率随着曝气速率的提升而增大,曝气速率为80 mL·min?1时去除率达到未曝气条件下的1.35倍。这是由于曝气处理通过鼓动水流提升水体中溶解氧的浓度,增强了H2O2的生成效率(式(6))[32-33]。在继续提高曝气速率后,As(Ⅲ)去除率没有显著的变化,这表示继续增加曝气速率对去除效果的提升有限,溶解氧水平已经达到饱和。因此,当曝气速率确定为80 mL·min?1时,反应效率可维持在较高水平。


不同浓度电解质对地下水中As(Ⅲ)去除率的影响如图7所示。由图7可知,去除率随着电解质浓度的增加而提升,当电解质质量浓度为100 mg·L?1时去除率最佳。这说明KCl为电流提供了一个合适的通道,增强了溶液的导电性,使电芬顿体系中·OH产生效率得到提升[34-35]。此外,KCl能够避免${\rm{CO}}_3^{2 - }$${\rm{HCO}}_3^ - $${\rm{SO}}_4^{2 - }$等作为电解质时与水体中存在的Ca2+反应形成电极表面钝化层,并丰富阳极的溶解,从而提高芬顿反应效率[36-37]。同时,溶液中Cl?可能被电流催化生成次氯酸(HClO)(式(7)~式(8)),从而促进As(Ⅲ)的氧化[38]。然而,过高的电解质浓度并不能进一步提高去除率,这是由于过量的KCl电解质会捕获·OH (式(9)~式(13))。



处理系统的使用寿命是评判其实用性的重要指标。因此,在实验中没有对电极材料进行清洗与更换的情况下,考察了连续运行条件下流通式电芬顿系统对地下水中As(Ⅲ)去除效果的变化。由图8可以看出,在最佳反应条件下,经过6次循环实验,As(Ⅲ)的去除率没有发生明显的改变,依次为99.6%、99.2%、99.5%、98.9%、99.3%、99.1%。这表明流通式电芬顿系统在处理含As(Ⅲ)地下水污染时具有良好的稳定性与寿命。



为了探明流通式电芬顿体系中As(Ⅲ)的去除机理,配置一定浓度的水杨酸(SAL)与苯醌(BQ)溶液作为自由基淬灭剂,考察了其对地下水中As(Ⅲ)去除率的影响[39]。由图9可看出,加入水杨酸作为·OH淬灭剂后,As(Ⅲ)的去除率下降至71.2%;而在投加苯醌溶液时,As(Ⅲ)去除率为92%。这说明·OH对As(Ⅲ)/As(Ⅴ)的转化起着主导作用,而过氧化羟基自由基HO2·也能够在一定程度上加速As(Ⅲ)的氧化,二者共同促进了As(Ⅲ)的氧化。如图10所示,去除过程可以合理地总结为:芬顿反应中产生的·OH与HO2·协同对As(Ⅲ)进行高效的氧化(式(14)~式(19))。在此过程中,金属Ni的析出促进了O2的还原(式(20)~式(21)),在一定程度上提高了芬顿反应效率[40-41]。此外,阳极溶出的Fe(III)能对As起到絮凝作用(式(22))[42]





为了去除溶液中的As(Ⅴ)以及可能析出的Ni(II)与Fe(III),反应器中活性炭纤维过滤器被用于对水体进行最后的净化。对出水中As、Ni、Fe类物质的质量浓度变化进行了测定,来进一步证明As(Ⅲ)被高效氧化后去除。如图11所示,反应开始后As(Ⅲ)的质量浓度迅速下降,而As(Ⅴ)质量浓度在初期上升,随后快速地下降。溶液中As(Ⅴ)被活性炭纤维过滤器有效地拦截,以及在阴极表面还原为As。阴极与阳极析出的Ni(II)、Fe(III)同样被过滤器留下。在通电条件下,过滤器还可能存在电吸附反应,加强了对污染离子的截留作用[31],溶液中总As、总Ni、总Fe的浓度变化有力地证实了这一点。此结果表明,流通式电芬顿系统能够有效地对污染水体中As(Ⅲ)进行高效去除,并避免了对水体的二次污染。



1)设计了一种流通式电芬顿系统且将其用于处理地下水中的高浓度As(Ⅲ)。在电流密度为7.6 mA·cm?2、pH为6、流速为20 mL·min?1、曝气速率为80 mL·min?1、电解质浓度为100 mg·L?1的最佳反应条件下,其可在短时间内对As(Ⅲ)进行高效的处理,As(Ⅲ)去除率可达99.6%以上。
2) ·OH与HO2·能够协同作用,促进As(Ⅲ)的去除。流通式电芬顿系统具有良好的稳定性与寿命,经过连续使用6次后处理效果仍较好。
3) As(Ⅴ)、Ni、Fe可在该系统中与出水进行分离,达成水体的净化,从而可避免二次污染的发生。

参考文献 (42)
相关话题/系统 污染 图片 实验 质量