3.甘肃省膜科学技术研究院有限公司,兰州 730050
1.School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
3.Gansu Membrane Science and Technology Research Institute Co. Ltd., Technology, Lanzhou 730050, China
为考察水力停留时间(hydraulic retention time, HRT)对膜生物反应器(membrane bioreactor, MBR)体系内的混合液特性和膜污染的影响,对兰州某生活污水处理厂生化尾水进行了浸入式中空纤维MBR现场实验。结果表明,在HRT由6 h逐渐升高至12 h的过程中,胞外聚合物(extracellular polymeric substances, EPS)中大分子质量颗粒物的比例、溶解性微生物产物(soluble microbial products, SMP)的含量和污泥的Zeta电位分布均逐渐增大。同时,EPS多糖含量、污泥粒径和黏度均出现逐渐降低的趋势,这些因素可能共同作用导致膜组件的运行时间缩短、过膜压差(transmembrane pressure, TMP)快速增大,最终致使膜污染进程的加快。在HRT为6 h、膜通量15 L·(m
的条件下,中空纤维式MBR处理生化尾水可以获得较好的混合液特性和处理效果。
In order to investigate the effects of hydraulic residence time (HRT) on the mixed liquid characteristics and membrane fouling in a membrane bioreactor (MBR) system, an immersive hollow fiber MBR was used to conduct field experiments treating the biochemical tail water from a wastewater treatment plant in Lanzhou. The results showed that the proportion of macromolecular mass particulate matter in extracellular polymeric substances (EPS), concentration of soluble microbial products(SMP) and Zeta potential distribution of sludge increased gradually when HRT increased from 6 hours to 12 hours. At the same time, the decreasing trends occurred for the concentration of EPS polysaccharide, sludge particle size and viscosity, and their combined effects led to the reduction of the running time and the rapid increase of the transmembrane pressure (TMP), finally the process of membrane fouling was accelerated. Good mixed liquid characteristics and treatment effect were obtained when the biochemical tail water was treated by hollow fiber MBR under the conditions of HRT of 6 hours, membrane flux of 15 L·(m
.
.
Flow diagram of experiment
TMP changes at different HRTs
FTIR of microorganism metabolites at different HRTs
Distributions of microorganism metabolites at different HRTs
不同HRT下微生物代谢产物中颗粒物的分子质量分布
Distribution of macromolecular particulate matter of microbial metabolites at different HRTs
Distribution of sludge particle size
relative strength of Zeta potential of sludge at different HRTs
Viscosity of mixture at different HRTs
[1] | WANG Z, WU Z, TANG S. Extracellular polymeric substances (EPS) properties and their effects on membrane fouling in a submerged membrane bioreactor[J]. Water Research, 2009, 43(9): 2504-2512. doi: 10.1016/j.watres.2009.02.026 |
[2] | 李俊霞, 郭冀峰, 李继香. 有机负荷和温度对膜生物反应器膜污染的影响[J]. 水处理技术, 2020, 46(6): 45-49. |
[3] | VILLAMIL J A, MONSALVO V M, LOPEZ J, et al. Fouling control in membrane bioreactors with sewage-sludge based adsorbents[J]. Water Research, 2016, 105: 65-75. doi: 10.1016/j.watres.2016.08.059 |
[4] | HUANG Z, ONG S L, NG H Y. Submerged anaerobic membrane bioreactor for low-strength wastewater treatment: Effect of HRT and SRT on treatment performance and membrane fouling[J]. Water Research, 2011, 45(2): 705-713. doi: 10.1016/j.watres.2010.08.035 |
[5] | HAN W Q, WANG L J, SUN X Y, et al. Treatment of bactericide wastewater by combined process chemical coagulation, electrochemical oxidation and membrane bioreactor[J]. Journal of Hazardous Materials, 2008, 151(2/3): 306-315. doi: 10.1016/j.jhazmat.2007.05.088 |
[6] | LIU Y, LIU Q, LI J, et al. Effect of magnetic powder on membrane fouling mitigation and microbial community/composition in membrane bioreactors (MBRs) for municipal wastewater treatment[J]. Bioresource Technology, 2018, 249: 377-385. doi: 10.1016/j.biortech.2017.10.027 |
[7] | NG C A, SUN D, BASHIR M J, et al. Optimization of membrane bioreactors by the addition of powdered activated carbon[J]. Bioresource Technology, 2013, 138: 38-47. doi: 10.1016/j.biortech.2013.03.129 |
[8] | REMY M, POTIER V, TEMMINK H, et al. Why low powdered activated carbon addition reduces membrane fouling in MBRs[J]. Water Research, 2010, 44(3): 861-867. doi: 10.1016/j.watres.2009.09.046 |
[9] | DENG L, GUO W, NGO H H, et al. Biofouling and control approaches in membrane bioreactors[J]. Bioresource Technology, 2016, 221: 656-665. doi: 10.1016/j.biortech.2016.09.105 |
[10] | 仵海燕, 李开明, 陈中颖, 等. 水力停留时间对MBR中溶解性微生物产物生成的影响[J]. 环境工程学报, 2014, 8(3): 1086-1090. |
[11] | 宿程远, 王恺尧, 李伟光. 水力停留时间对双循环厌氧反应器处理中药废水污泥特性的影响[J]. 化工学报, 2015, 66(5): 1897-1903. |
[12] | FALLAH N, BONAKDARPOUR B, NASERNEJAD B, et al. Long-term operation of submerged membrane bioreactor (MBR) for the treatment of synthetic wastewater containing styrene as volatile organic compound (VOC): Effect of hydraulic retention time (HRT)[J]. Journal of Hazardous Materials, 2010, 178(1/2/3): 718-724. doi: 10.1016/j.jhazmat.2010.02.001 |
[13] | KHAN M M, TAKIZAWA S, LEWANDOWSKI Z, et al. Combined effects of EPS and HRT enhanced biofouling on a submerged and hybrid PAC-MF membrane bioreactor[J]. Water Research, 2013, 47(2): 747-757. doi: 10.1016/j.watres.2012.10.048 |
[14] | 赵艳晓, 王新华, 李秀芬. 耦合微滤膜的正渗透膜生物反应器的构建及其运行性能[J]. 环境工程学报, 2017, 11(4): 1981-1986. |
[15] | MENG F, SHI B, YANG F, et al. Effect of hydraulic retention time on membrane fouling and biomass characteristics in submerged membrane bioreactors[J]. Bioprocess and Biosystems Engineering, 2007, 30(5): 359-367. doi: 10.1007/s00449-007-0132-1 |
[16] | NGUYEN L N, HAI F I, NGHIEM L D, et al. Enhancement of removal of trace organic contaminants by powdered activated carbon dosing into membrane bioreactors[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(2): 571-578. doi: 10.1016/j.jtice.2013.05.021 |
[17] | 凌琪, 张贤芳, 伍昌年, 等. 投加改性粉煤灰和PAC对MBR运行效果的影响对比[J]. 中国给水排水, 2015, 31(11): 93-96. |
[18] | ZHAO B, CHEN H, GAO D, et al. Cleaning decision model of MBR membrane based on Bandelet neural network optimized by improved Bat algorithm[J]. Applied Soft Computing, 2020, 91: 106211. doi: 10.1016/j.asoc.2020.106211 |
[19] | 李彬, 王志伟, 安莹, 等. 膜-生物反应器处理高盐废水膜面污染物特性研究[J]. 环境科学, 2014, 35(2): 643-650. |
[20] | CROUE? J, BENEDETTI M F, D. VIOLLEAU, et al VIOLLEAU, et al. Characterization and copper binding of humic and nonhumic organic matter isolated from the South Platte River: Evidence for the presence of nitrogenous binding site[J]. Environmental Science & Technology, 2003, 37: 328-336. |
[21] | 王金翠, 孙宝盛. 胞外聚合物与溶解性微生物产物的关系[J]. 环境科学与技术, 2008, 31(11): 18-20. doi: 10.3969/j.issn.1003-6504.2008.11.005 |
[22] | TENG J, SHEN L, XU Y, et al. Effects of molecular weight distribution of soluble microbial products (SMPs) on membrane fouling in a membrane bioreactor (MBR): Novel mechanistic insights[J]. Chemosphere, 2020, 248: 126013. doi: 10.1016/j.chemosphere.2020.126013 |
[23] | LIN H, WANG F, DING L, et al. Enhanced performance of a submerged membrane bioreactor with powdered activated carbon addition for municipal secondary effluent treatment[J]. Journal of Hazardous Materials, 2011, 192(3): 1509-1514. doi: 10.1016/j.jhazmat.2011.06.071 |
[24] | 王红雨, 齐鲁, 陈杰, 等. 颗粒物粒径和有机物分子量对超滤膜污染的影响[J]. 环境工程学报, 2014, 8(5): 1993-1998. |
[25] | 时文歆, 段英随, 张冰, 等. 凹凸棒土-MBR组合工艺处理微污染水源水的效能与机理[J]. 膜科学与技术, 2016, 36(2): 96-101. |
[26] | 孙楠, 谌燕丽, 张颖. 投加HCPA对UF-MBR处理低温高色高氨氮水源水效能与膜污染控制的影响[J]. 中国环境科学, 2017, 37(4): 1339-1348. doi: 10.3969/j.issn.1000-6923.2017.04.018 |