4.中国科学院核心植物园,广州 510650
1.South China Botanical Garden, Chinese Academy of Science, Guangzhou 510650, China
3.Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou), Guangzhou 511458, China
4.Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
植物修复是重金属污染农田的一种环保型治理技术,但植物修复技术产生了一个新的难题——大量含重金属的生物质。为快速处置含镉超富集植物生物质,采用不同提取剂对产后龙葵和伴矿景天生物质中的镉(cadmium,Cd)进行液相萃取,并对其萃取废液通过物理(4?分子筛)和化学(KOH和K
)方法进行了处理。分别考察了不同提取剂种类、浓度对修复植物生物质中重金属镉萃取效果的影响,探讨了重金属废水不同处理措施对萃取废液中镉的去除效果。结果表明,0.25 mol?L
乙二胺四乙酸二钠(disodium ethylenediaminetetraacetate,EDTA) 4种提取剂对龙葵茎和叶中Cd的萃取效果最佳,且茎和叶中Cd的萃取率最高分别达88.2%和89.8%;4种提取剂的Cd萃取率之间无显著性差异(
盐酸作为液相萃取的提取剂最合适,4?分子筛作为萃取废液的净化剂最为高效。
Phytoremediation is an environment friendly technique for heavy metal contaminated farmland. However, the technique will produce large amounts of biomass as hyperaccumulator residues. For a rapid safe disposal of Cd-rich hyperaccumulators, different extractants were tested for Cd liquid extraction from the aboveground biomass of
L. and
. Physical (4? molecular sieve) and chemical (KOH and K
) methods were used to remove Cd in the extracted liquids to meet the requirements of sewage discharge standard. Effects of different extractants and extractant concentrations on Cd extraction in the plant biomass were investigated, and performance of different heavy metal wastewater treatment methods on Cd elimination in extracted liquids were compared. The results showed that 0.25 mol?L
disodium ethylenediaminetetraacetate (EDTA) showed the optimum extraction efficiency of Cd from the stems and leaves of
L., and the corresponding highest Cd extraction rates were 88.2% and 89.8% from the stems and leaves of
L., respectively. There were no significant differences between these different extractants (
>0.05). The Cd extraction efficiencies by different extractants from the shoots of
EDTA. The 4? molecular sieve was the most effective material for the subsequent elimination of Cd in extracted liquids, and the final Cd concentration in liquids was lower than 0.10 mg?L
) in China. Given the extraction efficiency of Cd, the cost of the extractant, and the subsequent elimination of Cd from the extracted liquid, 0.25 mol?L
HCl and 4? molecular sieve were the best alternatives of the extractant of the liquid extraction and the agent of Cd removal from the extracted liquid for post-harvest treatment of hyperaccumulator.
.
Effects of different extractants on Cd extraction efficiency from the stems and leaves of post-harvest
L.
不同提取剂对龙葵茎、叶中不同形态Cd的影响
Effects of different extractants on the Cd chemical forms in the stems and leaves of
L.
Effects of different extractants on Cd extraction efficiency from the shoots of post-harvest
Cadmium concentrations in the extracted liquids and residuals of stems and leaves of
L. and the recovery rate after extraction with different extractants
L. with different treatments
[1] | 陈能场, 郑煜基, 何晓峰, 等. 《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 2017, 36(9): 1689-1692. doi: 10.11654/jaes.2017-1220 |
[2] | LIU L W, LI W, SONG W P, et al. Remediation techniques for heavy metal-contaminated soils: Principles and applicability[J]. Science of the Total Environment, 2018, 633: 206-219. doi: 10.1016/j.scitotenv.2018.03.161 |
[3] | 李方洲, 滕玉婷, 张亚平, 等. 土壤重金属修复植物处置技术研究现状与展望[J]. 环境科学与技术, 2018, 41(S2): 213-220. |
[4] | 孙琳琳, 刘佳琪, 王一婷, 等. 超累积植物产后资源化技术研究进展[J]. 再生资源与循环经济, 2020, 13(9): 26-30. doi: 10.3969/j.issn.1674-0912.2020.09.009 |
[5] | GUO F H, ZHONG Z P. Pollution emission and heavy metal speciation from co-combustion of Sedum plumbizincicola and sludge in fluidized bed[J]. Journal of Cleaner Production, 2018, 179: 317-324. doi: 10.1016/j.jclepro.2018.01.105 |
[6] | HE J, STREZOV V, KAN T, et al. Effect of temperature on heavy metal(loid) deportment during pyrolysis of Avicennia marina biomass obtained from phytoremediation[J]. Bioresource Technology, 2019, 278: 214-222. doi: 10.1016/j.biortech.2019.01.101 |
[7] | VOCCIANTE M, CARETTA A, BUA L, et al. Enhancements in phytoremediation technology: Environmental assessment including different options of biomass disposal and comparison with a consolidated approach[J]. Journal of Environmental Management, 2019, 237: 560-568. doi: 10.1016/j.jenvman.2019.02.104 |
[8] | YANG Y, GE Y C, TU P F, et al. Phytoextraction of Cd from a contaminated soil by tobacco and safe use of its metal-enriched biomass[J]. Journal of Hazardous Materials, 2019, 363: 385-393. doi: 10.1016/j.jhazmat.2018.09.093 |
[9] | SINGH J W, KALAMDHAD A S. Concentration and speciation of heavy metals during water hyacinth composting[J]. Bioresource Technology, 2012, 124: 169-179. doi: 10.1016/j.biortech.2012.08.043 |
[10] | CUI X Q, ZHANG J W, WANG X T, et al. A review on the thermal treatment of heavy metal hyperaccumulator: Fates of heavy metals and generation of products[J]. Journal of Hazardous Materials, 2020, 405: 123832. |
[11] | YANG W, DAI H P, SKUZA L, et al. The front-heavy and back-light nitrogen application mode to increase stem and leaf biomass significantly improved cadmium accumulation in Solanum nigrum L.[J]. Journal of Hazardous Materials, 2020, 393: 122482. doi: 10.1016/j.jhazmat.2020.122482 |
[12] | ZHOU J W, LI Z, LIU M S, et al. Cadmium isotopic fractionation in the soil-plant system during repeated phytoextraction with a cadmium hyperaccumulating plant species[J]. Environmental Science & Technology, 2020, 54(21): 13598-13609. |
[13] | PATTERSON J W, ALLEN H E, SCALA J J. Carbonateprecipitation for heavy-metals pollutants[J]. Journal Water Pollution Control Federation, 1977, 49(12): 2397-2410. |
[14] | 王鹏程, 胡鹏杰, 钟道旭, 等. 镉锌超积累植物伴矿景天产后鲜样快速处置技术[J]. 环境工程学报, 2017, 11(9): 5307-5312. doi: 10.12030/j.cjee.201610116 |
[15] | KURNIAWAN T A, CHAN G Y S, LO W H, et al. Physico-chemical treatment techniques for wastewater laden with heavy metals[J]. Chemical Engineering Journal, 2006, 118(1/2): 83-98. |
[16] | RAO G P C, SATYAVENI S, RAMESH A, et al. Sorption of cadmium and zinc from aqueous solutions by zeolite 4A, zeolite 13X and bentonite[J]. Journal of Environmental Management, 2006, 81(3): 265-272. doi: 10.1016/j.jenvman.2005.11.003 |
[17] | XIN J, ZHAO X H, TAN Q L, et al. Comparison of cadmium absorption, translocation, subcellular distribution and chemical forms between two radish cultivars (Raphanus sativus L.)[J]. Ecotoxicology and Environmental Safety, 2017, 145: 258-265. doi: 10.1016/j.ecoenv.2017.07.042 |
[18] | MAO P, ZHUANG P, LI F, et al. Phosphate addition diminishes the efficacy of wollastonite in decreasing Cd uptake by rice (Oryza sativa L.) in paddy soil[J]. Science of the Total Environment, 2019, 687: 441-450. doi: 10.1016/j.scitotenv.2019.05.471 |
[19] | HUANG R, DONG M L, MAOP, et al. Evaluation of phytoremediation potential of five Cd (hyper)accumulators in two Cd contaminated soils[J]. Science of the Total Environment, 2020, 721: 137581. doi: 10.1016/j.scitotenv.2020.137581 |
[20] | CHEN L, LONG C, WANG D, et al. Phytoremediation of cadmium (Cd) and uranium (U) contaminated soils by Brassica juncea L. enhanced with exogenous application of plant growth regulators[J]. Chemosphere, 2020, 242: 125112. doi: 10.1016/j.chemosphere.2019.125112 |
[21] | LI X D, MA H, LI L L, et al. Subcellular distribution, chemical forms and physiological responses involved in cadmium tolerance and detoxification in Agrocybe Aegerita[J]. Ecotoxicology and Environmental Safety, 2019, 171: 66-74. doi: 10.1016/j.ecoenv.2018.12.063 |
[22] | YUAN J, YANG Y, ZHOU X H, et al. A new method for simultaneous removal of heavy metals and harmful organics from rape seed meal from metal-contaminated farmland[J]. Separation and Purification Technology, 2019, 210: 1001-1007. doi: 10.1016/j.seppur.2018.09.056 |
[23] | 杨海琳, 廖柏寒. 低分子有机酸去除土壤中重金属条件的研究[J]. 农业环境科学学报, 2010, 29(12): 2330-2337. |
[24] | GITIPOUR S, AHMADI S, MADADIAN E, et al. Soil washing of chromium- and cadmium-contaminated sludge using acids and ethylenediaminetetra acetic acid chelating agent[J]. Environmental Technology, 2016, 37(1): 145-151. doi: 10.1080/09593330.2011.597784 |
[25] | WEI S H, ZENG X F, WANG S S, et al. Hyperaccumulative property of Solanum nigrum L. to Cd explored from cell membrane permeability, subcellular distribution, and chemical form[J]. Journal of Soils and Sediments, 2014, 14(3): 558-566. doi: 10.1007/s11368-013-0810-3 |
[26] | LI X X, CUI X W, ZHANG X, et al. Combined toxicity and detoxification of lead, cadmium and arsenic in Solanum nigrum L.[J]. Journal of Hazardous Materials, 2020, 389: 121874. doi: 10.1016/j.jhazmat.2019.121874 |
[27] | LU R R, HU Z H, ZHANG Q L, et al. The effect of Funneliformis mosseae on the plant growth, Cd translocation and accumulation in the new Cd-hyperaccumulator Sphagneticola calendulacea[J]. Ecotoxicology and Environmental Safety, 2020, 203: 110988. doi: 10.1016/j.ecoenv.2020.110988 |
[28] | WU Y, WANG M L, YU L, et al. A mechanism for efficient cadmium phytoremediation and high bioethanol production by combined mild chemical pretreatments with desirable rapeseed stalks[J]. Science of the Total Environment, 2020, 708: 135096. doi: 10.1016/j.scitotenv.2019.135096 |
[29] | WANG X L, ZHANG B J, WU D S, et al. Chemical forms governing Cd tolerance and detoxification in duckweed (Landoltia punctata)[J]. Ecotoxicology and Environmental Safety, 2021, 207: 111553. doi: 10.1016/j.ecoenv.2020.111553 |
[30] | ZHANG X F, HU Z H, YAN T X, et al. Arbuscular mycorrhizal fungi alleviate Cd phytotoxicity by altering Cd subcellular distribution and chemical forms in Zea mays[J]. Ecotoxicology and Environmental Safety, 2019, 171: 352-360. doi: 10.1016/j.ecoenv.2018.12.097 |
[31] | 韩业钜, 张耿崚, 邱晓盛, 等. 超声波辅助离子液体-盐酸溶液预处理稻秆的研究[J]. 环境科学学报, 2018, 38(1): 283-290. |
[32] | 曾汉元, 宋荣, 吴林华. 5种高大禾草的纤维素和木质素含量的测定[J]. 安徽农业科学, 2011, 39(19): 11660-11774. doi: 10.3969/j.issn.0517-6611.2011.19.120 |
[33] | LI Z B, SHUMAN L M. Redistribution of forms of zinc, cadmium and nickel in soils treated with EDTA[J]. Sicence of the Total Environment, 1996, 191(1/2): 95-107. |
[34] | SONG Z W, ZHONG Z P, ZHONG D X, et al. Comparison between sequential and single extraction procedures for metal speciation in fresh and dried Sedum plumbizincicola[J]. Journal of Central South University, 2015, 22(2): 487-494. doi: 10.1007/s11771-015-2547-1 |
[35] | VIKRANT K, KUMAR V, VELLINGIRI K, et al. Nanomaterials for the abatement of cadmium (II) ions from water/wastewater[J]. Nano Research, 2019, 12(7): 1489-1507. doi: 10.1007/s12274-019-2309-8 |
[36] | WANG L K, VACCARI D A, LI Y, et al. Physicochemical Treatment Processes: Chemical Precipitation[M]. Totowa, NJ: Humana Press, 2005: 141-197. |
[37] | MALIK L A, BASHIR A, QUREASHI A, et al. Detection and removal of heavy metal ions: A review[J]. Environmental Chemistry Letters, 2019, 17(4): 1495-1521. doi: 10.1007/s10311-019-00891-z |
[38] | POHL A. Removal of heavy metal ions from water and wastewaters by sulfur-containing precipitation agents[J]. Water, Air, & Soil Pollution, 2020, 231(10): 1-17. |
[39] | BURAKOV A E, GALUNIN E V, BURAKOVA I V, et al. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review[J]. Ecotoxicology and Environmental Safety, 2018, 148: 702-712. doi: 10.1016/j.ecoenv.2017.11.034 |
[40] | 石飞, 刘红, 刘鲁建, 等. 4A和13X分子筛去除水中重金属Cd2+及其吸附性能研究[J]. 武汉科技大学学报, 2014, 37(1): 54-58. |
[41] | 范先媛, 谢升昌, 刘红, 等. 4A分子筛去除水中Pb2+、Cd2+、Zn2+、Cu2+性能和机理[J]. 环境科学与技术, 2019, 42(5): 46-52. |
[42] | SHEN X, QIU G, YUE C, et al. Multiple copper adsorption and regeneration by zeolite 4A synthesized from bauxite tailings[J]. Environmental Science and Pollution Research, 2017, 24(27): 21829-21835. doi: 10.1007/s11356-017-9824-5 |