3.云南磷化集团有限公司,国家磷资源开发利用工程技术研究中心,昆明 650600
1.Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361000, China
3.National Engineering and Technology Research Center for Development & Utilization of Phosphorous Resources, Yunnan Phosphate Chemical Group Co. Ltd., Kunming 650600, China
生物炭和磷基材料是常用土壤重金属钝化材料,但单一施用均存在一定不足。为了更好发挥生物炭和磷基材料的作用,开展了炭基和磷基复配材料修复重金属镉(Cd)污染土壤研究。制备了猪粪生物炭(B)、浮选尾矿(F)、黄磷渣(H)、猪粪炭-浮选尾矿复配材料(BF)和猪粪炭-黄磷渣复配材料(BH)5种钝化材料,并探讨了这些材料对溶液中Cd
的吸附能力排序为:H>BH>B>BF>F。将5种材料以1%或5%比例施入污染土壤后,土壤Cd有效态含量降低幅度均可达70%以上;Cd有效态含量降低幅度均随材料施用比例增加而增加。复配材料BF和BH未表现出加和效应,其钝化效果介于单一生物炭处理和单一磷基材料处理之间。炭基和磷基复配材料能够有效吸附和钝化Cd,其中含黄磷渣的复配材料较含浮选尾矿的材料具有更好的Cd钝化效果。本研究结果可为复配修复土壤材料的开发提供参考。
Biochar and phosphate-based materials are commonly used as immobilization materials for heavy metals in soils, but there are still some limitation while using single material. In order to get better immobilization performance, this study was conducted to investigate the effects of biochar-phosphate based composites on the mobility of cadmium pollutants in soils. Five materials were prepared, including pig manure biochar (B), flotation tailing of phosphate rock (F), slag of yellow phosphate production(H), composite material with pig manure biochar and flotation tailing of phosphate rock (BF), and composite material with pig manure biochar and slag of yellow phosphate production (BH). The adsorption-desorption characteristics of Cd
on different materials were investigated, and the effects of these amendment materials on the availability and speciation of Cd in soil were explored. Results indicated that the adsorption of Cd
onto BF or BH reached equilibrium within 6 h, and the adsorption rates were faster than that onto F, but slower than that onto B or H. The adsorption capacity of five materials for Cd
followed the order of H > BH > B > BF > F. The concentrations of available Cd in soils were all significantly decreased over 70% after the amendment of either material into soils at the application rate of 1% or 5%, which were decreased with the increase in dosage. There was no synergetic effect observed in BH and BF treatment. The immobilization performance of the composite of biochar and phosphate-based material was between biochar alone and phosphate material alone. The composite materials showed great immobilization ability, where the yellow phosphate production containing-composite better than the composite containing flotation tailing of phosphate rock. The results provide technical support for the alleviation of heavy metal pollution in soils.
.
on different materials
on different materials
室内培养15 d和30 d后各处理下土壤Cd有效态含量
Concentrations of available Cd in soils after 15 days and 30 days incubation with different treatments
室内模拟培养15和30 d后不同处理组土壤Cd赋存形态
Speciation of Cd in soils after 15 days and 30 days incubation with different treatments
[1] | HU B F, SHAO S, NI H, et al. Current status, spatial features, health risks, and potential driving factors of soil heavy metal pollution in China at province level[J]. Environmental Pollution, 2020, 266: 114961. doi: 10.1016/j.envpol.2020.114961 |
[2] | 王立群, 罗磊, 马义兵, 等. 重金属污染土壤原位钝化修复研究进展[J]. 应用生态学报, 2009, 20 (5): 1214-1222. |
[3] | NOVOTNY E H, MAIA C M B D F, CARVALHO M T D M, et al. Biochar: pyrogenic carbon for agricultural use: A critical review[J]. Revista Brasileira De Ciência Do Solo, 2015, 39(2): 321-344. |
[4] | INYANG M I, GAO B, YING Y, et al. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal[J]. Critical Reviews in Environmental Science and Technology, 2016, 46(28): 406-433. |
[5] | CUI L, NOERPEL M R, SCHECKEL K G, et al. Wheat straw biochar reduces environmental cadmium bioavailability[J]. Environment International, 2019, 126(6): 69-75. |
[6] | ZHANG R H, LI Z G, LIU X D, et al. Immobilization and bioavailability of heavy metals in greenhouse soils amended with rice straw-derived biochar[J]. Ecological Engineering, 2017, 98: 183-188. doi: 10.1016/j.ecoleng.2016.10.057 |
[7] | 陈世宝, 李娜, 王萌, 等. 利用磷进行铅污染土壤原位修复中需考虑的几个问题[J]. 中国生态农业学报, 2010, 18(1): 203-209. |
[8] | SESHADRI B, BOLAN N S, CHOPPALA G, et al. Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil[J]. Chemosphere, 2017, 184: 197-206. doi: 10.1016/j.chemosphere.2017.05.172 |
[9] | KONG L L, ZHOU Q X. Influences of biochar aging processes by eco-environmental conditions[J]. Advanced Materials Research, 2013, 790: 467-470. doi: 10.4028/www.scientific.net/AMR.790.467 |
[10] | 周世伟, 徐明岗. 磷酸盐修复重金属污染土壤的研究进展[J]. 生态学报, 2007, 27(7): 3043-3050. doi: 10.3321/j.issn:1000-0933.2007.07.046 |
[11] | 吴岩, 杜立宇, 梁成华, 等. 生物炭与沸石混施对不同污染土壤镉形态转化的影响[J]. 水土保持学报, 2018, 32(1): 286-290. |
[12] | 周航, 周歆, 曾敏, 等. 2种组配改良剂对稻田土壤重金属有效性的效果[J]. 中国环境科学, 2014, 34(2): 437-444. |
[13] | AHMAD M, USMAN A R A, AL-FARAJ A S, et al. Phosphorus-loaded biochar changes soil heavy metals availability and uptake potential of maize (Zea mays L.) plants[J]. Chemosphere, 2018, 194: 327-339. doi: 10.1016/j.chemosphere.2017.11.156 |
[14] | 中华人民共和国生态环境部. 土壤环境质量 农用地土壤污染风险管控标准: GB 15618-2018[S]. 北京: 2018. |
[15] | HOUBA V J G, TEMMINGHOFF E J M, GAIKHORST G A, et al. Soil analysis procedures using 0.01 M calcium chloride as extraction reagent[J]. Communications in Soil Science and Plant Analysis, 2000, 31: 1299-1396. doi: 10.1080/00103620009370514 |
[16] | TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851. doi: 10.1021/ac50043a017 |
[17] | 中国科学院南京土壤研究所. 土壤理化分析[M]. 上海: 上海科学技术出版社, 1978. |
[18] | 杜娇娇. 含磷材料原位修复Cd(Ⅱ)污染地下水的实验研究[D]. 杭州: 浙江农林大学, 2015. |
[19] | 李瑞月, 陈德, 李恋卿, 等. 不同作物秸秆生物炭对溶液中Pb2+、Cd2+的吸附[J]. 农业环境科学学报, 2015, 34(5): 1001-1008. |
[20] | 朱司航, 赵晶晶, 楚龙港, 等. 纳米羟基磷灰石改性生物炭对铜的吸附性能研究[J]. 农业环境科学学报, 2017, 36 (10): 2092-2098. doi: 10.11654/jaes.2017-0525 |
[21] | 石和彬. 磷灰石型环境矿物材料的制备与表征[D]. 长沙: 中南大学, 2012. |
[22] | FERNANE F, MECHERRI M O, SHARROCK P, et al. Sorption of cadmium and copper ions on natural and synthetic hydroxylapatite particles[J]. Materials Characterization, 2008, 59(5): 554-559. doi: 10.1016/j.matchar.2007.04.009 |
[23] | 雷涵韫, 王光火. 三种不同组成磷矿石的溶解特性比较[J]. 浙江大学学报(农业与生命科学版), 2005, 31 (1): 17-21. |
[24] | 刘世荣, 肖金凯. 贵州黄磷渣的成分特征[J]. 矿物学报, 1997, 17(3): 329-336. doi: 10.3321/j.issn:1000-4734.1997.03.015 |
[25] | 汤亚飞, 胡胜超, 王薇. 黄磷渣释放磷酸盐的特性研究[J]. 环境科学与技术, 2015, 38(S1): 390-392. |
[26] | SU X J, ZHU J, FU Q L, et al. Immobilization of lead in anthropogenic contaminated soils using phosphates with/without oxalic acid[J]. Journal of Environmental Sciences, 2015, 28(2): 64-73. |
[27] | ZHANG H, CHEN C, GRAY E M, et al. Roles of biochar in improving phosphorus availability in soils: A phosphate adsorbent and a source of available phosphorus[J]. Geoderma, 2016, 276: 1-6. doi: 10.1016/j.geoderma.2016.04.020 |
[28] | SHEPHERD J, JOSEPH S, SOHI S, et al. Biochar and enhanced phosphate capture: Mapping mechanisms to functional properties[J]. Chemosphere, 2017, 179(1): 57-74. |
[29] | ZHAN F D, ZENG W Z, Yuan X C, et al. Field experiment on the effects of sepiolite and biochar on the remediation of Cd- and Pb-polluted farmlands around a Pb-Zn mine in Yunnan Province, China[J]. Environmental Science and Pollution Research, 2019, 26(8): 7743-7751. doi: 10.1007/s11356-018-04079-w |
[30] | 段然, 胡红青, 付庆灵, 等. 生物炭和草酸活化磷矿粉对镉镍复合污染土壤的应用效果[J]. 环境科学, 2017, 38 (11): 392-399. |
[31] | YUAN J H, XU R K, HONG Z. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technology, 2011, 102(3): 3488-3497. doi: 10.1016/j.biortech.2010.11.018 |
[32] | KIM S U, OWENS V N, KIM Y G, et al. Effect of phosphate addition on cadmium precipitation and adsorption in contaminated arable soil with a low concentration of cadmium[J]. Bulletin of Environmental Contamination and Toxicology, 2015, 95(5): 675-679. doi: 10.1007/s00128-015-1621-6 |
[33] | 林青, 徐绍辉. 土壤中重金属离子竞争吸附的研究进展[J]. 土壤, 2008, 40 (5): 706-711. doi: 10.3321/j.issn:0253-9829.2008.05.005 |
[34] | FAN J J, CAI C, CHI H F, et al. Remediation of cadmium and lead polluted soil using thiol-modified biochar[J]. Journal of Hazardous Materials, 2020, 388: 122037. doi: 10.1016/j.jhazmat.2020.122037 |
[35] | 林爱军, 张旭红, 苏玉红, 等. 骨炭修复重金属污染土壤和降低基因毒性的研究[J]. 环境科学, 2007, 28(2): 232-237. doi: 10.3321/j.issn:1001-0742.2007.02.018 |
[36] | 雷鸣, 曾敏, 胡立琼, 等. 不同含磷物质对重金属污染土壤-水稻系统中重金属迁移的影响[J]. 环境科学学报, 2014, 34(6): 1527-1533. |
[37] | LI H, YE X, GENG Z, et al. The influence of biochar type on long-term stabilization for Cd and Cu in contaminated paddy soils[J]. Journal of Hazardous Materials, 2016, 304: 40-48. doi: 10.1016/j.jhazmat.2015.10.048 |
[38] | 曹永强, 荆延德, 申磊, 等. 生物炭与磷肥配施对棕壤中Cd形态及其有效性的影响[J]. 生态与农村环境学报, 2018, 34 (10): 939-945. doi: 10.11934/j.issn.1673-4831.2018.10.011 |
[39] | 李飞跃, 沈皖豫, 吴旋, 等. 生物炭复配矿物质钝化修复重金属复合污染土壤的研究[J]. 土壤通报, 2020, 51(1): 195-200. |
[40] | JIN S, HU Z, HUANG Y, et al. Evaluation of several phosphate amendments on rare earth element concentrations in rice plant and soil solution by X-ray diffraction[J]. Chemosphere, 2019, 236: 124322. doi: 10.1016/j.chemosphere.2019.07.053 |
[41] | EL-NAGGAR A, EL-NAGGAR A H, SHAHEEN S M, et al. Biochar composition-dependent impacts on soil nutrient release, carbon mineralization, and potential environmental risk: A review[J]. Journal of Environmental Management, 2019, 241: 458-467. |
[42] | WANG Y, LIU Y, ZHAN W, et al. Stabilization of heavy metal-contaminated soils by biochar: Challenges and recommendations[J]. Science of the Total Environment, 2020, 729(197): 139060. |