2.固体废物能源化清洁利用技术与装备国家工程研究中心, 杭州 310027
1.Institute of Thermal Power Engineering of Zhejiang University, Hangzhou 310027, China
2.National Engineering Laboratory of Waste Incineration Technology and Equipment, Hangzhou 310027, China
入炉垃圾进料速率实时测量对垃圾焚烧炉的稳定运行和污染控制具有重要作用,但传统技术工艺很难实现入炉垃圾进料速率的实时测量。利用双目视觉原理搭建了料堆体积测量平台,为减少垃圾焚烧炉料斗内光线暗、垃圾表面弱纹理等复杂因素的影响,提出了一种双目视觉耦合激光的垃圾进料速率实时检测技术,并开展了验证实验。结果表明,该堆料体积测算方法可将误差控制在1%以下,符合垃圾焚烧炉进料速率测算对精度的要求。通过对某垃圾焚烧电厂经济性分析发现,本炉垃圾进料速率测量设备可大幅度降低经济成本。该研究结果可与焚烧炉运行参数以及污染物排放参数进行耦合计算,通过深度学习与优化控制,以实现垃圾清洁、高效与智慧焚烧。
The real-time measurement of the feed rate of the waste into the furnace plays an important role in the stable operation and pollution control of the waste incinerator, but it is difficult to realize the real-time measurement of the feed rate of the waste into the furnace with the current technology. A binocular vision principle was used to build a stack volume measurement platform in this paper. In order to reduce the influence of complex factors such as the dark light in the waste incinerator hopper and the weak texture of the waste surface, a binocular vision coupled laser was proposed to realize the real-time waste feed rate and test verification was carried out. The results showed that the error of this stack volume estimation method can be controlled below 1%, which meted the accuracy requirements of the waste incinerator feed rate estimation. Through the economic analysis of a waste incineration power plant, it was found that the installation of the measurement equipment for the feed rate of waste into the furnace proposed in this paper, the economic cost was greatly reducing. The research results can be coupled with the operating parameters of the incinerator and the pollutant emission parameters through deep learning and optimized control to achieve clean, efficient and smart incineration of waste.
.
Schematic diagram of binocular vision ranging
Schematic diagram of binocular vision coupled laser array detection system
Corner extraction and camera calibration
Binocular camera calibration error histogram
Comparison of original and calibrated sand table images
disparitySGM和disparityBM函数计算获得的视差图
Disparity maps calculated by the disparitySGM and disparityBM functions
Modeling diagram of MATLAB three-dimensional
[1] | ZHAO X G, JIANG G W, LI A, et al. Technology, cost, a performance of waste-to-energy incineration industry in China[J]. Renewable and Sustainable Energy Reviews, 2016, 55: 115-130. doi: 10.1016/j.rser.2015.10.137 |
[2] | 中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2020. |
[3] | WANG H T, NIE Y F. Municipal solid waste characteristics and management in China[J]. Journal of the Air & Waste Management Association, 2001, 51: 250-263. |
[4] | 秦宇飞, 白焰, 王潇, 等. 北京市朝阳区城市生活垃圾组分分布特性研究[J]. 环境工程学报, 2009, 3(8): 1498-1502. |
[5] | 王桂琴, 张红玉, 王典, 等. 北京市城区生活垃圾组成及特性分析[J]. 环境工程, 2018, 36(4): 132-136. |
[6] | 蔡亚明. 循环流化床垃圾焚烧炉燃烧调整[D]. 杭州: 浙江大学, 2020. |
[7] | 任超峰, 方朝军, 王武忠. 生活垃圾循环流化床锅炉一氧化碳减排浅析[J]. 工业锅炉, 2018(4): 37-40. |
[8] | 吕国钧, 蒋旭光, 蔡永祥, 等. 400 t/d循环流化床垃圾焚烧锅炉改造的设计和运行[J]. 锅炉技术, 2019, 50(2): 27-34. |
[9] | 徐爱杰. 生活垃圾焚烧二噁英生成机理及控制技术[J]. 化学工程与装备, 2019(9): 278-279. |
[10] | 赵毅, 张玉海, 闫蓓. 二恶英的生成及污染控制[J]. 环境污染治理技术与设备, 2006, 7(11): 1-7. |
[11] | 杨宏强, 孙瑜, 杜伟. 燃煤火电厂只能DCS的功能设计与应用[J]. 热力发电, 2020(49): 100-106. |
[12] | 祝剑, 吉海军, 王勇, 等. 流化床垃圾焚烧锅炉配套设备技改升级及燃烧自动控制系统建设[J]. 国企管理, 2018(21): 58-63. doi: 10.3969/j.issn.2095-7599.2018.21.034 |
[13] | 李萍. 基于机器视觉的散装物料动态计量系统研究[D]. 北京: 中国矿业大学, 2017. |
[14] | 佟帅, 徐晓刚, 易成涛, 等. 基于视觉的三维重建技术综述[J]. 计算机应用研究, 2011, 28(7): 2411-2417. doi: 10.3969/j.issn.1001-3695.2011.07.003 |
[15] | 陈金星. 基于多目视觉的物料堆三维重建算法研究[D]. 沈阳: 东北大学, 2014. |
[16] | 毛佳红, 娄小平, 李伟仙, 等. 基于线结构光的双目三维体积测量系统[J]. 光学技术, 2016, 42(1): 10-15. |
[17] | 李红卫. 基于结构光成像的散装堆料体积测量系统研究[D]. 西安: 西安科技大学, 2019. |
[18] | 丁嗣禹, 苗红霞, 齐本胜, 等. 基于双目视觉的不规则堆料体积测量研究[J]. 计算机测量与控制, 2020, 28(4): 71-74. |
[19] | 李博阳, 耿楠, 张志毅. 基于机器视觉的激光条纹扫描系统[J]. 计算机仿真, 2015, 32(6): 241-255. doi: 10.3969/j.issn.1006-9348.2015.06.055 |
[20] | 沈彤, 刘文波, 王京. 基于双目立体视觉的目标测距系统[J]. 电子测量技术, 2015, 38(4): 52-54. doi: 10.3969/j.issn.1002-7300.2015.04.013 |
[21] | 马颂德, 张正友. 计算机视觉: 计算理论与算法基础[M]. 北京: 科学出版社, 1997. |
[22] | 杨景豪, 刘薇, 刘阳, 等. 双目立体视觉测量系统的标定[J]. 光学精密工程, 2016, 24(2): 300-308. |
[23] | YANG Q X. A non-local cost aggregation method for stereo matching[C]. IEEE Conference on Computer Vision and Pattern Recognition, Providence, Rhode Island, 2012. |
[24] | LIANG Z, FENG Y, GUO Y, et al. Learning for disparity estimation through feature constancy[C]. IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, America, 2018. |
[25] | HIRSCHMULLER H. Accurate and efficient stereo processing by semi-global matching and mutual information[C]. IEEE Conference on Computer Vision and Pattern Recognition, San Diego, 2005. |
[26] | 姚羽曼, 罗文嘉, 戴一阳. 数据驱动方法在化工过程故障诊断中的研究进展[J]. 化工进展, 2021, 40(4): 1755-1762. |
[27] | 陶怀志, 孙巍, 赵劲松, 等. 基于BP神经网络的垃圾焚烧过程故障诊断[J]. 环境工程学报, 2008, 2(7): 989-993. |
[28] | 朱新才, 胡桂川, 林顺洪. 城市生活垃圾在炉排炉炉内焚烧过程研究及数值模拟[J]. 环境工程学报, 2013, 7(12): 4958-4964. |
[29] | 应雨轩, 林晓青, 吴昂键, 等. 生活垃圾智慧焚烧的研究现状及展望[J]. 化工学报, 2021, 72(2): 886-900. |
[30] | 谢昊源, 黄群星, 林晓青, 等. 基于图像深度学习的垃圾热值预测研究及展望[J]. 化工学报, 2021, 72(5): 2773-2782. |
[31] | 陈海滨, 杨伦全, 刘锦权. 垃圾填埋场设计计算中垃圾密度的取值[J]. 环境卫生工程, 1996(2): 11-15. |