全文HTML
--> --> --> 白洋淀为华北平原最大的半封闭式浅水湖泊,淀区物种丰富,多数水域大型水生植物覆盖度为60%左右。经调查,白洋淀共有水生植物39种,隶属于19科30属,其中分布面积较广的优势群落有芦苇群落、狭叶香蒲群落、金鱼藻群落等[1]。水生植物构成了白洋淀湿地独特的环境生态,然而由于收割不及时、管护不到位,湿地水生植被残体在水体中大量堆积、腐烂,导致水体溶解氧降低、透明度减少[2],水体恶臭,氮、磷等有机物浓度升高,并释放多种硫化物(硫醇、甲硫醚、二甲基二硫醚等),引发生态灾害[3]。沈爱春等[4]在太湖进行的原位实验发现,蓝藻的集聚死亡会导致水体的溶解氧降低,水体营养盐含量迅速增加,TN和



好氧堆肥是固体废弃物资源化处理的有效技术之一,已在沉水植物“减量化、无害化”处理方面有诸多应用[7]。沉水植物与非沉水植物相比,具有氮、磷、钾等营养元素丰富、含水量高、C/N低等特点。程花等[8]通过分析马来眼子菜、金鱼藻等6种沉水植物的理化性质,证实了沉水植物堆肥的可行性。王亚等[9]以麦秸和树叶为辅料,提高了沉水植物堆肥的腐熟度。陆伟东等[10]利用水葫芦与猪粪混合堆肥,王丽芬等[11]利用水葫芦与污泥混合堆肥,均取得了满意的堆肥效果。王亚梅[12]的研究结果表明,生物炭的添加可显著提高猪粪堆肥的腐熟度。有研究表明,在有机废弃物堆肥中添加生物质炭可提高堆体温度,延长堆肥高温持续的时间,减少氮素损失[13]。卢妙[14]证实了秸秆-污泥基生物炭的添加有利于污泥堆肥,同时在制备生物炭的过程中消耗了大量污泥,可更大程度的使脱水污泥减量化及无害化。NIGUSSIE等[15]通过荟萃分析发现,微生物菌剂对堆肥总氮(+30%)、总磷(+46%)、C/N(?31%)、腐殖化指数(+60%)和种子发芽指数(+28%)等堆肥腐熟指标均有明显的积极作用。张秧等[16]的研究表明,在小麦秸秆中添加微生物菌剂对腐殖质的形成有一定的促进作用。以上研究已证实,好氧堆肥是沉水植物利用的有效途径,生物炭、湿地底泥和微生物菌剂作为调理剂均可促进堆肥进程、提高堆肥品质,但以上调理剂对沉水植物堆肥腐熟的影响有待进一步研究。
本研究以白洋淀湿地大型沉水植物(金鱼藻和马来眼子菜)为研究对象,以生物炭、湿地底泥和微生物菌剂为调理剂,通过对比不同调理剂处理下好氧堆肥各处理组的理化及生物学指标,探明不同调理剂对堆肥腐熟效果的影响,提出沉水植物堆肥腐熟的科学调控方法,以期为改善白洋淀水体环境和沉水植物的资源化利用方式提供新思路。
1.1. 供试材料
本实验沉水植物(金鱼藻和马来眼子菜)和湿地底泥在白洋淀打捞获取;干鸡粪和尿素用来调节堆肥碳氮比(C/N);生物炭为SC-101型秸秆生物炭;发芽实验选择紫穗槐种子;复合微生物菌剂含有乳酸菌、酵母菌等微生物菌群,EM菌种含有双岐菌、乳酸菌、芽孢杆菌等微生物菌群。本实验自制微生物菌剂的培养方法为:将500 g红糖溶于含有9 L蒸馏水的塑料桶中,取2.5 g EM菌种加入塑料桶,并混合均匀,将塑料桶密封好后置于32 ℃的气候箱中培养7 d,即可得到菌剂原液,将原液与蒸馏水按1∶10稀释后即可得到所需菌剂。堆肥原料性质见表1。
1.2. 实验设计和取样
本研究实验于2021年2月23日至3月30日在雄安生态环境研究院实验室进行。将沉水植物风干粉碎成1 cm左右的小段,置于120 ℃、1.5 kPa的高温灭菌锅中灭菌20 min,用干鸡粪和尿素调节沉水植物的C/N为28~30,湿地底泥和生物炭的添加量分别为物料总干重的10%和2%,保持堆体水分含量为65%左右。将原料置于32 cm×22 cm×16 cm的发酵盒中,并排列在温度50 ℃、湿度为65%的气候箱中进行高温发酵[17-18]。实验容器为耐高温的PP环保发酵盒,覆盖带孔的塑料薄膜,以降低水分蒸发速率。同时,根据堆体温度、水分的变化情况,在堆肥开始后每6 d翻堆1次并补充菌剂。在起堆的第0、6、12、18、24、30、36 d采用“五点取样法”取样,即分别在堆体的前、后、左、右及中心采集样品200 g,并均匀混合,一部分做风干处理用于理化指标测定,一部分常温存放用于测定种子发芽指数。本实验共设计8个处理组,实验周期为36 d,各处理组设计见表2。
1.3. 测定指标与方法
每天在固定时间测定堆肥上、中、下的温度,并取均值作为该堆体的温度;采用外加热法测定有机质;采用凯氏定氮法测定全氮;用pH/EC仪测定pH和EC值[19];半纤维素、纤维素、木质素的测定采用Van Soest洗涤法[20];富里酸和胡敏酸的测定参考NY/T 1971-2010《水溶肥料腐植酸含量的测定》[21];将鲜样与蒸馏水按1∶10(g∶mL)混合震荡2 h,浸提后在25 ℃的恒温箱内培养紫穗槐种子,48 h后记录发芽个数及根长,计算种子发芽指数。2.1. 不同处理堆肥的温度变化
温度是堆肥工艺比较常用的物理评价指标之一,在堆肥过程中温度是影响微生物活动和堆肥工艺过程的关键因素。从图1可以看出,本实验8个处理组的温度变化趋势大致相同,主要可分为升温期、高温期、降温腐熟期[22-23]。在起堆的3~9 d,温度迅速升高且均达到最大值。这说明堆体具有良好的碳氮比、孔隙度等发酵条件,嗜热微生物分解有机物产生大量热量和气体并迅速繁殖,使得堆体迅速达到高温期。随后,温度总体呈现波动下降,并逐渐稳定。堆体最高温度为53.1~54.8 ℃,其可能的原因是,高温堆肥前期有机酸、无机酸含量升高较快,部分嗜温微生物活性受阻,数量减少,嗜热微生物成为整个堆肥过程中的优势菌种[24]。C组和H组堆肥平均温度的组间排序分别为:SB-H>S-H>B-H>CK-H、SB-C>B-C>S-C>CK-C。自制微生物菌剂较复合微生物菌剂含有更多、更有效的活性微生物,这导致喷洒自制微生物菌剂处理组的平均温度均高于其他处理组。没有添加生物炭和湿地底泥的对照组均为组内最低温度,由此说明,添加湿地底泥和生物炭的处理组也对促进堆体升温有一定的效果。在堆肥24 d左右,部分处理组堆体温度有小幅度的升高。其可能的原因为:翻堆和微生物菌剂补充的作用,高温好氧微生物再次繁殖,剩余的难分解纤维素类大分子物质开始被缓慢消耗,堆体内未分解完全的物质进行二次反应发酵。随后,堆体温度逐渐降低并趋于稳定,预示着堆肥过程结束。2.2. 不同处理对堆肥pH、EC的影响
图2(a)表明,不同处理堆肥的pH均呈现出先升高后降低的趋势,堆肥结束时,pH均在7.55~7.81,这符合高温堆肥产品腐熟的pH标准[25]。在0~6 d的反应过程中,微生物降解含氮有机物发生氨化作用,产生大量的








电导率(EC)主要反映堆体中存在的可溶性盐的浓度,可作为判定堆肥是否限制作物生长的指标。当EC值小于9.0 mS·cm?1时,可认为对种子发芽没有抑制作用;当EC值小于4.0 mS·cm?1时,才能施用于土壤中,并且不会对植物产生抑制作用[28]。如图2(b)所示,不同处理的EC值在堆肥的初始阶段都有增加。造成这种趋势的原因是:部分有机物质在堆肥初期被降解成具有可溶性的小分子物质,如铵盐、磷酸盐、小分子有机酸和其他溶解的有机物等,随着堆肥反应的进行,由于有机酸的降解、腐殖质的形成以及NH3、CO2的排放等因素,不同处理的EC值均略有下降并趋于稳定。堆肥结束时,各处理的EC值为2.74(S-H)~3.36(CK-C)。这说明S-H处理组的堆肥产品对植物的毒害作用最小,CK-C处理组可能会对植物种子产生渗透压胁迫,对植物生长起到一定的抑制作用。综上所述,本实验的所有处理均可排除盐害的影响。
2.3. 不同处理对堆肥碳、氮含量的影响
图3(a)和图3(b)为堆肥过程中总有机质(TOM)和全氮(TN)的质量分数变化情况。TOM是堆肥过程中主要损失的物质,是堆肥进程中微生物进行生物化学反应的有效底物[29],在堆肥过程中呈现出逐渐降低的趋势。固体有机物通过微生物的代谢活动形成更容易被微生物利用的溶解性有机物(DOM),随着堆肥反应的进行,小分子有机物重组形成具有稳定结构的腐殖质[30]。在0~12 d的反应过程中,TOM质量分数降低明显。其可能的原因是:堆肥初期微生物活动旺盛,TOM以CO2、CH4、热量等形式快速损耗降解。不同处理由于物料有机碳组分的不同造成有机质降解率差异显著。第36天时, SB-H和SB-C处理组的TOM降解率分别为25.51%和21.68%,均大于添加相同菌剂的其他处理,这说明湿地底泥和生物炭的协同作用更有利于TOM的分解利用。对比B-H处理组与S-H处理组、B-C处理组与S-C处理组的TOM含量可知,生物炭对促进堆体TOM损耗转化的作用大于湿地底泥。堆肥结束时,TOM质量分数均在45%以上,符合有机肥料标准[20]。在堆肥进程中一直伴随着氮素的损失[31],氮素在发酵过程中会不断进行氨化作用、硝化作用、反硝化作用和固氮作用等,随着堆肥时间的推移、堆体体积的减小TN质量分数总体呈现上升的趋势。堆肥前期,TN质量分数明显上升。其可能的原因是:前期缩堆现象明显,湿地底泥的添加为反应提供了部分氮源,生物炭的作用减少了氮素的损失。当堆肥结束时,各处理的TN质量分数增加了22.99%~41.73%。堆体碳氮比是判断堆体是否腐熟的重要指标,当堆体C/N<20时,可认为堆肥已腐熟[32]。如图3(c)所示,本实验中,所有处理在堆肥结束时C/N均在15.08~19.39,都已达到腐熟条件。2.4. 不同处理对堆肥HA、FA和HA/FA的影响
腐殖质(HS)主要由胡敏酸(HA)和富里酸(FA)组成,它不仅是堆肥的重要产物,也是评价堆肥质量的重要指标[33]。HA是指能够溶于碱溶液而不能够在酸溶液中被溶解的腐殖质物质,在土壤养分的保持以及土壤团粒结构的形成过程中发挥着重要作用[34]。从图4(a)中可以看出,HA的质量分数整体呈波动上升趋势。堆肥结束时,各处理堆肥HA的质量分数总体上差别不大,基本稳定在4.82%~5.86%。其中,SB-C处理组的HA质量分数由初始的3.16%到堆肥结束时的5.73%,增长率最高达75.23%,除S-C处理组(47.00%)外的HA增长率均在50%以上。图4(b)为FA的质量分数变化情况。从图4(b)可以看出,FA因其较小的相对分子质量、较简单的结构特点,随着堆体中微生物的大量繁殖,原料中的FA被微生物大量分解,堆体在微生物作用下分解合成FA的速率与其矿化或聚合成HA的速率的动态变化影响着FA含量的动态变化。堆肥结束时,各处理的FA含量为2.41%~2.66%,与初始质量分数相比减少幅度表现为:SB-H>S-C>B-H>S-H>B-C>SB-C>CK-H>CK-H。HA/FA是用来评价最终堆肥成熟度的指标之一,该指数越高表示产品越稳定。一般认为,HA/FA大于1.9时,可视为堆肥已完全腐熟,因此,分析腐殖化指数对确定堆肥成熟度至关重要[35]。HA和FA在堆肥过程中可以相互转化,在微生物的作用下,大量新的稳定的HA分子逐渐被合成,而分子量小、结构简单、不稳定的FA则逐渐被分解。因此,如图4(c)所示,随着堆肥化过程的推进,各处理HA/FA呈上升趋势。这一趋势与REN等[36]的研究结果一致。本堆肥实验结束时,HA/FA的值为1.23~1.54,腐殖化最高的4个处理组是SB-H、B-H、SB-C、S-H。这表明,在堆体中添加湿地底泥、生物炭和微生物菌剂,均能够促进沉水植物堆肥的腐殖化和聚合化,生物炭的微孔结构为微生物提供了更多的生长繁殖空间[37],湿地底泥能显著增加堆体的微生物多样性及丰度,自制微生物菌剂的添加有效促进了难降解化合物的降解,添加剂间的协同作用能够有效促进HA的形成和FA的降解,逐渐产生复杂的HS,进而提高堆体的腐殖化程度[38]。
2.5. 不同处理堆肥对种子发芽指数的影响
发芽指数(GI)是堆肥腐熟度评价生物学指标之一,该指数既考虑了种子的发芽率,也考虑了毒性物质对种子生根的影响。当GI大于80%时,证明堆肥已基本达到腐熟状态;当GI大于100%时,可认为堆肥产物对种子生长发挥了积极作用[39]。如图5所示,堆肥初期由于产生了大量的有毒物质,铵态氮浓度过高会抑制种子萌发,不同处理的种子发芽指数在60%左右。经过36 d的堆肥腐熟,所有处理的发芽指数均有较大幅度的提升,发芽指数为104.00%~116.57%,各组的排序为:SB-H>SB-C>B-H>B-C>S-H>S-C>CK-H>CK-H。对比相同添加剂下不同微生物菌剂的作用可知,自制微生物菌剂的堆肥处理较之复合微生物菌剂更能促进种子发芽和根系生长;添加生物炭及其联用实验组发芽指数更具优势,湿地底泥和生物炭协同作用下的堆肥处理种子发芽指数最高,同时生物炭的积极作用大于湿地底泥。2.6. 不同处理对堆肥木质纤维素含量的影响
木质纤维素是构成植物的主体部分,其结构复杂较难降解,通常大量存在于生活垃圾和农业废物中。纤维素的降解直接影响着堆肥的腐殖化过程,也是限制堆肥周期的关键因素[40]。木质纤维素中的半纤维素是最易被降解的。如图6(a)所示,半纤维素质量分数总体呈现出波动下降的趋势。在堆肥初期,半纤维素作为易被降解的有机物优先成为碳源。在6 d的反应过程中,部分半纤维素的降解率均达到50%左右。在6~24 d反应过程中,半纤维素质量分数增加。其可能的原因是半纤维素的消耗速率降低,其他有机质被消耗降解,堆体总质量减小。在24~36 d反应过程中,由于微生物菌剂的补充,微生物活动旺盛,堆体中的半纤维素再次加速消耗,使得堆肥后期半纤维质量分数有小幅度的下降。堆肥结束时,各处理的半纤维素降解率为27.45%~43.94%,各处理的排序为:SB-H>B-H>SB-C>B-C>S-C>S-H>CK-H>CK-H。添加湿地底泥和生物炭的处理均对半纤维素有较高的降解率,在添加相同微生物菌剂的处理组中,添加生物炭处理的半纤维素降解率均高于添加湿地底泥的处理,且都高于对照组。如图6(b)所示,纤维素质量分数的变化趋势与半纤维素相似。经过36 d的堆肥,各处理纤维素的降解率基本稳定在17.07%~26.92%。纤维素是植物残体中最丰富的部分,相比于半纤维素较难降解[41]。堆肥结束时,各处理纤维素的降解率为17.07%~26.92%,各处理的排序为:CK-H>CK-H>S-C>S-H>B-C>SB-C>B-H>SB-H。该降解率趋势与半纤维的降解率相反。可能的原因为:1)有效微生物通过合成纤维素酶来降解堆体中的纤维素,微生物菌剂与湿地底泥和生物炭的协同作用并不能起到促进纤维素酶合成的作用,湿地底泥和生物炭对堆体纤维素的降解没有明显的积极作用,导致处理组较对照组对纤维素的降解较差;2)由于堆肥反应的复杂性,不同处理堆体总质量的不均匀减小导致纤维素的绝对含量呈现此趋势。
如图6(c)所示,木质素的质量分数呈现出先增加后降低的趋势。堆肥前期木质素的质量分数变大,可能的原因是,木质素不含有易水解而重复的单元,是微生物最难降解的部分[42]。在堆肥反应中,微生物优先分解消耗结构相对简单、易分解的有机物,与纤维素的降解相比,木质素的降解主要集中在堆肥腐熟阶段;堆肥结束时,各处理木质素的降解率为10.86%~13.54%。SB-C处理组木质素降解率(13.54%)显著高于对照组CK-C(11.45%),这说明生物炭和湿地底泥在沉水植物腐熟过程中对木质素的降解有促进作用。对比B-H与S-H处理组、B-C与S-C处理组的木质素含量可知,湿地底泥对堆肥过程中木质素降解的促进作用大于生物炭。其可能的原因是,生物炭虽然为微生物的生长繁殖营造了一个相对适宜的环境,但湿地底泥具有更丰富的微生物群落及数量,微生物活动更加旺盛,产生更多益于木质素分解的酶。
2)生物炭较湿地底泥更能促进堆肥C/N下降,提高种子发芽指数;生物炭和湿地底泥的协同作用可显著提高沉水植物好氧堆肥进程、优化堆肥的理化性质。
3)自制微生物菌剂为堆体提供了更有效的微生物种群,可促进木质纤维素降解酶的合成,提高木质纤维素的生物降解率,加速腐殖质的形成,从而易形成更稳定、更高效的堆肥产品。
参考文献