4.河南省环境污染控制重点实验室, 新乡 453007
2.College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
3.Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang 453007, China
4.Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453007, China
外源硫杆菌可以促进植物修复重金属污染土壤,然而硫杆菌对土壤中铅的活化作用机理尚不明确。通过土培实验,研究了单质硫和生物炭对土著硫杆菌的诱导作用和对土壤铅形态的作用机理。结果表明,单质硫能够诱导并富集土壤中的土著硫杆菌,相对丰度从0.02%增加至6.99%。生物炭促进了诱导作用,添加生物炭和单质硫,硫杆菌相对丰度增加至13.33%。同时添加3%(质量分数)生物炭和0.5%(质量分数)单质硫培养60 d后,土壤pH从7.83降低至6.64,Eh先降低至230 mV,后逐渐增加至299 mV;有机碳从19.40 g·kg
;土壤中铅由可还原态向酸可溶态、可氧化态和残渣态转变,可还原态铅减少了20.13%,酸可溶态、可氧化态和残渣态分别增加了53.76%、35.29%和69.40%。单质硫和生物炭能够富集土著硫杆菌,提高铅的生物有效性,同时对部分铅起到钝化固定作用。本研究可为提高土壤中铅的生物有效性以促进植物修复铅污染土壤提供参考。
on phytoremediation has attracted in recent years, however, the mobilization mechanism of
on soil lead is still unclear. The mechanism of sulfur and biochar on the induction of indigenous
and the distribution of soil lead content were studied through soil culture experiments. The relative abundance of
in soil was increased from 0.02% to 6.99%, which was inducted by sulfur in soil. The induction was promoted by biochar. The relative abundance of
was increased to 13.33% with biochar addition. With a 3% (mass fraction) of biochar and 0.5% (mass fraction) of sulfur addition in a 60 d pot experiment, the soil pH was decreased from 7.83 to 6.64. The soil Eh was decreased to 230 mV directly at the beginning of experiment, and increased to 299 mV after 60 d. The soil organic carbon was increased from 19.40 g·kg
. 20.13% of reducible Pb species was transformed to acid extractable, oxidizable and residual Pb species, which was increased by 53.76%, 35.29% and 69.40%, respectively. The combined of biochar and sulfur can promote the bioavailability, and immobilize Pb in soil at same time. This study can provide an approach for regulating the Pb bio-availability for phytoremediation of Pb-contaminated soil
.
Effects of biochar and sulfur on distribution of Pb fractions
SEM-EDS images of BC550
Taxonomic compositions of bacterial communities in soil at genus level
PCoA analysis of microbial communities
Effect of biochar and sulfur on soil pH
Effects of biochar and sulfur on soil Eh
FT-IR spectra of soil during pot experiment
[1] | 姜宇. 耐铅微生物与景观植物协同修复铅污染土壤研究[D]. 合肥: 安徽建筑大学, 2019 |
[2] | 环境保护部, 国土资源部. 全国土壤污染状况调查公报[EB/OL]. [2021-06-05]. http://www.gov.cn/xinwen/2014-04/17/content_2661765.htm. |
[3] | LI P Z, LIN C Y, CHENG H G, et al. Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China[J]. Ecotoxicology and Environmental Safety, 2015, 113: 391-399. doi: 10.1016/j.ecoenv.2014.12.025 |
[4] | 唐文忠, 孙柳, 单保庆. 土壤/沉积物中重金属生物有效性和生物可利用性的研究进展[J]. 环境工程学报, 2019, 13(8): 1775-1790. doi: 10.12030/j.cjee.201902041 |
[5] | MANI D, KUMAR C, PATEL N K. Integrated micro-biochemical approach for phytoremediation of cadmium and lead contaminated soils using Gladiolus grandiflorus L cut flower[J]. Ecotoxicology and Environmental Safety, 2016, 124: 435-446. |
[6] | YE J P, LIAO W M, ZHANG P Y, et al. Fe1-xS/biochar combined with thiobacillus enhancing lead phytoavailability in contaminated soil: Preparation of biochar, enrichment of thiobacillus and their function on soil lead[J]. Environmental Pollution, 2020, 267: 115447. doi: 10.1016/j.envpol.2020.115447 |
[7] | MISHRA R, DATTA S P, ANNAPURNA K, et al. Enhancing the effectiveness of zinc, cadmium, and lead phytoextraction in polluted soils by using amendments and microorganisms[J]. Environmental Science and Pollution Research, 2019, 26(17): 17224-17235. doi: 10.1007/s11356-019-05143-9 |
[8] | KESHAVARZ S, GHASEMI-FASAEI R, RONAGHI A, et al. Innovative assisted phytoremediation of multi-elements contaminated soil by ryegrass: An electro-bio-chemical approach[J]. Journal of Soils and Sediments, 2021, 21: 2604-2618. |
[9] | KONG L J, XIONG Y, TIAN S H, et al. Preparation and characterization of a hierarchical porous char from sewage sludge with superior adsorption capacity for toluene by a new two-step pore-fabricating process[J]. Bioresource Technology, 2013, 146: 457-462. doi: 10.1016/j.biortech.2013.07.116 |
[10] | 李琋, 王雅璇, 罗廷, 等. 利用生物炭负载微生物修复石油烃-镉复合污染土壤[J]. 环境工程学报, 2021, 15(2): 677-687. doi: 10.12030/j.cjee.202003093 |
[11] | PEREZ-MORENO S M, GAZQUEZ M J, PEREZ-LOPEZ R, et al. Validation of the BCR sequential extraction procedure for natural radionuclides[J]. Chemosphere, 2018, 198: 397-408. doi: 10.1016/j.chemosphere.2018.01.108 |
[12] | 安梅, 董丽, 张磊, 等. 不同种类生物炭对土壤重金属镉铅形态分布的影响[J]. 农业环境科学学报, 2018, 37(5): 892-898. |
[13] | JIN Y, LIU W, LI X L, et al. Nano-hydroxyapatite immobilized lead and enhanced plant growth of ryegrass in a contaminated soil[J]. Ecological Engineering, 2016, 95: 25-29. doi: 10.1016/j.ecoleng.2016.06.071 |
[14] | PANDA S, AKCIL A, PRADHAN N, et al. Current scenario of chalcopyrite bioleaching: A review on the recent advances to its heap-leach technology[J]. Bioresource Technology, 2015, 196: 694-706. doi: 10.1016/j.biortech.2015.08.064 |
[15] | IGALAVITHANA A D, LEE S E, LEE Y H, et al. Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils[J]. Chemosphere, 2017, 174: 593-603. doi: 10.1016/j.chemosphere.2017.01.148 |
[16] | BONAGLIA S, BROMAN E, BRINDEFALK B, et al. Activated carbon stimulates microbial diversity and PAH biodegradation under anaerobic conditions in oil-polluted sediments[J]. Chemosphere, 2020, 248: 126023. doi: 10.1016/j.chemosphere.2020.126023 |
[17] | GORLENKO V M, BRYANTSEVA I A, KALASHNIKOV A M, et al. Candidatus ‘Chloroploca asiatica’ gen. nov., sp. nov., a new mesophilic filamentous anoxygenic phototrophic bacterium[J]. Microbiology, 2014, 83(6): 838-848. doi: 10.1134/S0026261714060083 |
[18] | 徐如玉, 左明雪, 袁银龙, 等. 氮肥用量优化对甜玉米氮肥吸收利用率及氮循环微生物功能基因的影响[J]. 南方农业学报, 2020, 51(12): 2919-2926. |
[19] | HE X L, SUN Q, XU T Y, et al. Removal of nitrogen by heterotrophic nitrification-aerobic denitrification of a novel halotolerant bacterium Pseudomonas mendocina TJPU04[J]. Bioprocess and Biosystems Engineering, 2019, 42(5): 853-866. doi: 10.1007/s00449-019-02088-8 |
[20] | 胡锦刚, 肖春桥, 邓祥意, 等. 稀土浸矿场地土壤异养硝化-好氧反硝化菌株K3的分离及脱氮研究[J]. 稀土, 2021, 42(5): 1-12. |
[21] | 刘钰莹, 张妍, 汪哲远, 等. 硝化抑制剂与生物炭配施对水稻土氮素转化及氮肥利用率的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(2): 223-232. |
[22] | 安凤秋, 吕家珑, 刁展, 等. 铅对塿土细菌群落组成的影响研究[J]. 农业环境科学学报, 2018, 37(2): 268-275. doi: 10.11654/jaes.2017-0960 |
[23] | CUAXINQUE-FLORES G, AGUIRRE-NOYOLA J L, HERNANDEZ-FLORES G, et al. Bioimmobilization of toxic metals by precipitation of carbonates using Sporosarcina luteola: An in vitro study and application to sulfide-bearing tailings[J]. Science of the Total Environment, 2020, 724: 138124. doi: 10.1016/j.scitotenv.2020.138124 |
[24] | 韩宝红, 宋蕾, 李浩, 等. 不同温度条件下稳定剂对沉积物中镉稳定化的影响[J]. 环境科学学报 2019, 39(8): 2610-2616. |
[25] | ZHAI X Q, LI Z W, HUANG B, et al. Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization[J]. Science of the Total Environment, 2018, 635: 92-99. doi: 10.1016/j.scitotenv.2018.04.119 |
[26] | WATERLOT C, PRUVOT C, CIESIELSKI H, et al. Effects of a phosphorus amendment and the pH of water used for watering on the mobility and phytoavailability of Cd, Pb and Zn in highly contaminated kitchen garden soils[J]. Ecological Engineering, 2011, 37(7): 1081-1093. doi: 10.1016/j.ecoleng.2010.09.001 |
[27] | AHARONOV-NADBORNY R, TSECHANSKY L, RAVIV M, et al. Mechanisms governing the leaching of soil metals as a result of disposal of olive mill wastewater on agricultural soils[J]. Science of the Total Environment, 2018, 630: 1115-1123. doi: 10.1016/j.scitotenv.2018.02.270 |
[28] | CAO X D, MA L Q, SINGH S P, et al. Phosphate-induced lead immobilization from different lead minerals in soils under varying pH conditions[J]. Environmental Pollution, 2008, 152(1): 184-192. doi: 10.1016/j.envpol.2007.05.008 |
[29] | 毛凌晨, 叶华. 氧化还原电位对土壤中重金属环境行为的影响研究进展[J]. 环境科学研究, 2018, 31(10): 1669-1676. |
[30] | FROHNE T, RINKLEBE J, DIAZ-BONE R A. Contamination of floodplain soils along the Wupper River, Germany, with As, Co, Cu, Ni, Sb, and Zn and the impact of pre-definite redox variations on the mobility of these elements[J]. Soil and Sediment Contamination, 2014, 23(7): 779-799. doi: 10.1080/15320383.2014.872597 |
[31] | GUO S H, LIU Z L, LI Q S, et al. Leaching heavy metals from the surface soil of reclaimed tidal flat by alternating seawater inundation and air drying[J]. Chemosphere, 2016, 157: 262-270. doi: 10.1016/j.chemosphere.2016.05.019 |
[32] | 罗松英, 陈东平, 陈碧珊, 等. 红树林湿地土壤矿物的分析[J]. 分析测试学报, 2019, 38(7): 823-829. doi: 10.3969/j.issn.1004-4957.2019.07.009 |
[33] | LINKER R, SHMULEVICH I, KENNY A, et al. Soil identification and chemometrics for direct determination of nitrate in soils using FTIR-ATR mid-infrared spectroscopy[J]. Chemosphere, 2005, 61(5): 652-658. doi: 10.1016/j.chemosphere.2005.03.034 |
[34] | DROUET C, NAVROTSKY A. Synthesis, characterization, and thermochemistry of K-Na-H3O jarosites[J]. Geochimica et Cosmochimica Acta, 2003, 67(11): 2063-2076. doi: 10.1016/S0016-7037(02)01299-1 |
[35] | 彭玉旋. 红外光谱在几种相似硫酸盐矿物判别中的应用[J]. 新疆地质, 2015, 33(1): 130-133. doi: 10.3969/j.issn.1000-8845.2015.01.027 |
[36] | 施川. 污泥生物炭作为吸附剂和酸性土壤改良剂的可行性研究[D]. 北京: 北京林业大学, 2016. |
[37] | ZHAO M, LIU X W, LI Z T, et al. Inhibition effect of sulfur on Cd activity in soil-rice system and its mechanism[J]. Journal of Hazardous Materials, 2021, 407: 124647. doi: 10.1016/j.jhazmat.2020.124647 |
[38] | 王一帆. DOM对铅在黑土中吸附行为的影响与黑土中铅原位钝化[D]. 辽宁: 东北农业大学, 2019. |
[39] | 孟依柯, 王媛, 汪传跃. 木屑生物炭在雨水径流中的氮磷淋出和吸附特性[J]. 环境科学, 2021, 42(9): 4332-4340. |