3.南京万德斯环保科技股份有限公司,南京 211100
1.Key Laboratory of Marine Environment and Ecology of Ministry of Education, Ocean University of China, Qingdao 266000, China
2.Shandong Key Laboratory of Marine Environmental Geology Engineering, Ocean University of China, Qingdao 266000, China
3.Nanjing Wondux Environmental Protection Technology Co. Ltd., Nanjing 211100, China
以絮状厌氧消化污泥为接种污泥,经过250 d运行后成功启动了ANAMMOX-UASB反应器。结果表明:在启动过程中,絮体污泥逐渐颗粒化并以不规则状的红色颗粒污泥和褐色絮状污泥为主;脱氢酶活性由启动前的3 909.51 μg·(h·g)
;EPS含量在启动过程中先降后升,EPS组成中主要为TB-EPS,占比由54.4%升至75.7%;启动过程中LB-EPS和TB-EPS中均以PN为主,且PN占比逐步增大,分别由初始的88.7%和89.5%增至99.6%和94.7%;启动过程中EPS的结构与组成均发生变化。ANAMMOX-UASB启动过程中微生物Chao1、ACE、Shannon和Simpson指数均先升后降,启动成功后微生物多样性和丰富度均降低。污泥中微生物的优势菌门为变形菌门(
丰度最终增至12.15%。
The ANAMMOX-UASB reactor inoculated with flocculent anaerobic digestion sludge was successfully started up after 250 days operation. During the full startup process, floc sludge was gradually granulated, and mainly consists of irregular red granular sludge and brown flocculent sludge. The activity of dehydrogenase decreased from 3 909.51 μg·(h·g)
during the entire startup process. Furthermore, the EPS content declined initially and then increased, and TB-EPS proportion increased from 54.4% to 75.7%, which was the main constituent of EPS. Meanwhile, PN was also the main component in both LB-EPS and TB-EPS, and the proportion of PN increased gradually from 88.7% and 89.5% to 99.6% and 94.7%, respectively. During the startup of ANAMMOX-UASB, both the composition and structure of EPS changed, the indexes of Chao1, ACE, Shannon and Simpson increased firstly and then declined, and the microbial diversity and richness decreased after successful startup. The dominant phyla of microorganisms were
increased ultimately to 12.15%.
.
Schematic diagram of experimental equipment
ANAMMOX-UASB启动过程的污泥表观形态
Sludge apparent morphology during ANAMMOX-UASB startup process
ANAMMOX-UASB启动过程中的脱氢酶变化
Change in DHA activity during ANAMMOX-UASB startup process
ANAMMOX-UASB启动过程中的EPS含量及组分变化
Changes of EPS contents and components during startup process of ANAMMOX-UASB
启动过程中LB-EPS和TB-EPS的三维荧光光谱
Three-dimensional fluorescence spectra of LB-EPS and TB-EPS during startup
ANAMMOX-UASB启动过程中微生物门水平组成
Composition of microorganisms at the phylum level during startup process of ANAMMOX-UASB
ANAMMOX-UASB启动过程中浮霉菌门属水平组成
Composition of microorganisms of Planctomycetes at the genus level during startup process of ANAMMOX-UASB
Fluorescence spectral parameters of LB-EPS and TB-EPS during startup process of ANAMMOX-UASB
[1] | MENG F, SU G, HU Y, et al. Improving nitrogen removal in an ANAMMOX reactor using a permeable reactive biobarrier[J]. Water Research, 2014, 58: 82-91. doi: 10.1016/j.watres.2014.03.049 |
[2] | ABMA W R, SCHULTZ C E, MULDER J W, et al. Full-scale granular sludge ANAMMOX process[J]. Water Science and Technology, 2007, 55(8/9): 27-33. |
[3] | 沈耀, 陈重军, 张海芹, 等. 基于高通量测序的ABR厌氧氨氧化反应器各隔室细菌群落特征分析[J]. 环境科学, 2016, 37(7): 2652-2658. |
[4] | 陈文静, 陈圣东, 梁佳茵, 等. Anammox脱氮工艺启动研究进展[J]. 环境科学与技术, 2019, 42(11): 130-140. |
[5] | 徐师, 张大超, 肖隆文, 等. 厌氧氨氧化反应快速启动方法的研究进展[J]. 环境工程, 2018, 36(6): 18-21. |
[6] | 吕玮, 张立秋, 黄奕亮, 等. 常温低基质下两种厌氧氨氧化反应器启动特性比较[J]. 中国给水排水, 2019, 35(3): 31-37. |
[7] | GAO F, ZHANG H, YANG F, et al. The effects of zero-valent iron (ZVI) and ferroferric oxide (Fe3O4) on anammox activity and granulation in anaerobic continuously stirred tank reactors (CSTR)[J]. Process Biochemistry, 2014, 49(11): 1970-1978. doi: 10.1016/j.procbio.2014.07.019 |
[8] | WANG Y, HU X, JIANG B, et al. Symbiotic relationship analysis of predominant bacteria in a lab-scale anammox UASB bioreactor[J]. Environmental Science and Pollution Research, 2016, 23(8): 7615-7626. doi: 10.1007/s11356-015-6016-z |
[9] | 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. |
[10] | 朱南文, 闺航, 陈美慈, 等. TTC-脱氢酶测定方法的探讨[J]. 中国沼气, 1996, 14(2): 3-5. |
[11] | WANG Z, GAO M, WANG Z, et al. Effect of salinity on extracellular polymeric substances of activated sludge from an anoxic-aerobic sequencing batch reactor[J]. Chemosphere, 2013, 93(11): 2789-2795. doi: 10.1016/j.chemosphere.2013.09.038 |
[12] | HOU J, MIAO L, WANG C, et al. Effect of CuO nanoparticles on the production and composition of extracellular polymeric substances and physicochemical stability of activated sludge flocs[J]. Bioresource Technology, 2015, 176: 65-70. doi: 10.1016/j.biortech.2014.11.020 |
[13] | FR?LUND B B K. Extraction of extracellular polymers from activated sludge using a cation exchange resin[J]. Water Research, 1996, 8(30): 1749-1758. |
[14] | 杨明明, 刘子涵, 周杨, 等. 厌氧氨氧化颗粒污泥EPS及其对污泥表面特性的影响[J]. 环境科学, 2019, 40(5): 2341-2348. |
[15] | 彭广生, 陆燕青, 曾鸿鹄, 等. 人工湿地β-六六六去除效果及细菌群落特征分析[J]. 水处理技术, 2020, 46(8): 34-38. |
[16] | 朱晓桐, 于冰洁, 林久淑, 等. ANAMMOX-UASB反应器启动特性[J]. 环境科学与技术, 2020, 43(12): 143-150. |
[17] | 郑平, 许冬冬, 康达, 等. 厌氧氨氧化颗粒污泥研究进展[J]. 微生物学通报, 2019, 46(8): 1988-1995. |
[18] | BORAN K, JAN T K. Anammox biochemistry: A tale of heme c proteins[J]. Trends in Biochemical Science, 2016, 41(12): 998-1011. doi: 10.1016/j.tibs.2016.08.015 |
[19] | LIN Q, KANG D, ZHANG M, et al. The performance of anammox reactor during start-up: Enzymes tell the story[J]. Process Safety and Environmental Protection, 2019, 121: 247-253. doi: 10.1016/j.psep.2018.10.029 |
[20] | KIM S, PARK J, CHO Y, et al. Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions[J]. Bioresource Technology, 2013, 144: 8-13. doi: 10.1016/j.biortech.2013.06.068 |
[21] | CHEN H, HU H, CHEN Q, et al. Successful start-up of the anammox process: Influence of the seeding strategy on performance and granule properties[J]. Bioresource Technology, 2016, 211: 594-602. doi: 10.1016/j.biortech.2016.03.139 |
[22] | 杨敏, 胡学伟, 宁平, 等. 废水生物处理中胞外聚合物(EPS)的研究进展[J]. 工业水处理, 2011, 31(7): 7-12. doi: 10.3969/j.issn.1005-829X.2011.07.002 |
[23] | GUO J, WANG S, LIAN J, et al. Rapid start-up of the anammox process: Effects of five different sludge extracellular polymeric substances on the activity of anammox bacteria[J]. Bioresource Technology, 2016, 220: 641-646. doi: 10.1016/j.biortech.2016.08.084 |
[24] | MA B, LI Z, WANG S, et al. Insights into the effect of nickel (Ni(II)) on the performance, microbial enzymatic activity and extracellular polymeric substances of activated sludge[J]. Environmental Pollution, 2019, 251: 81-89. doi: 10.1016/j.envpol.2019.04.094 |
[25] | DONG J, ZHANG Z, YU Z, et al. Evolution and functional analysis of extracellular polymeric substances during the granulation of aerobic sludge used to treat p-chloroaniline wastewater[J]. Chemical Engineering Journal, 2017, 330: 596-604. doi: 10.1016/j.cej.2017.07.174 |
[26] | ZHU L, QI H, LV M, et al. Component analysis of extracellular polymeric substances (EPS) during aerobic sludge granulation using FTIR and 3D-EEM technologies[J]. Bioresource Technology, 2012, 124: 455-459. doi: 10.1016/j.biortech.2012.08.059 |
[27] | 王子超. 盐度和重金属对序批式生物反应器性能及微生物群落结构影响的研究[D]. 青岛: 中国海洋大学, 2014. |
[28] | 何承兴, 储昭瑞, 谭炳琰, 等. 厌氧氨氧化SBBR启动过程中菌群演替分析[J]. 水处理技术, 2019, 45(7): 93-96. |
[29] | 杨瑞丽, 王晓君, 吴俊斌, 等. 厌氧氨氧化工艺快速启动策略及其微生物特性[J]. 环境工程学报, 2018, 12(12): 3341-3350. |
[30] | 宋壮壮, 吕爽, 刘哲, 等. 厌氧氨氧化耦合反硝化工艺的启动及微生物群落变化特征[J]. 环境科学, 2019, 40(11): 5057-5065. |
[31] | 曹雁, 王桐屿, 秦玉洁, 等. 厌氧氨氧化反应器脱氮性能及细菌群落多样性分析[J]. 环境科学, 2017, 38(4): 1544-1550. |
[32] | 杨开亮, 廖德祥, 王莹, 等. 厌氧氨氧化快速启动及微生物群落演替研究[J]. 水处理技术, 2020, 46(5): 65-70. |
[33] | 沈耀良, 张海芹, 王翻翻, 等. 不同接种污泥ABR厌氧氨氧化的启动特征[J]. 环境科学, 2015, 36(6): 2216-2221. |
[34] | CHEN C, HUANG X, LEI C, et al. Effect of organic matter strength on anammox for modified greenhouse turtle breeding wastewater treatment[J]. Bioresource Technology, 2013, 148: 172-179. doi: 10.1016/j.biortech.2013.08.132 |
[35] | MIAO Y, LIAO R, ZHANG X, et al. Metagenomic insights into Cr(VI) effect on microbial communities and functional genes of an expanded granular sludge bed reactor treating high-nitrate wastewater[J]. Water Research, 2015, 76: 43-52. doi: 10.1016/j.watres.2015.02.042 |
[36] | 朱彤, 贾若坦, 梁启煜, 等. 厌氧氨氧化反应器运行过程微生物群落演替分析[J]. 东北大学学报(自然科学版), 2018, 39(5): 693-698. doi: 10.12068/j.issn.1005-3026.2018.05.018 |
[37] | VAN DER STAR W R L, MICLEA A I, VAN DONGEN U G J M, et al. The membrane bioreactor: A novel tool to grow anammox bacteria as free cells[J]. Biotechnology and Bioengineering, 2008, 101(2): 286-294. doi: 10.1002/bit.21891 |
[38] | VAN DE VOSSENBERG J, RATTRAY J E, GEERTS W, et al. Enrichment and characterization of marine anammox bacteria associated with global nitrogen gas production[J]. Environmental Microbiology, 2008, 10(11): 3120-3129. doi: 10.1111/j.1462-2920.2008.01643.x |