信欣,,
刘琴,
杨豪,
刘洁,
罗彤,
樊馨宇,
袁佳颖
成都信息工程大学资源环境学院,成都 610225
作者简介: 管蕾(1992—),女,硕士研究生。研究方向:水污染控制及资源化。E-mail:1149483871@qq.com.
通讯作者: 信欣,xx@cuit.edu.cn ;
中图分类号: X703.1
Impact of Fe3O4@SiO2 on the performances of nitrogen and phosphorus removal in a SBR
GUAN Lei,XIN Xin,,
LIU Qin,
YANG Hao,
LIU Jie,
LUO Tong,
FAN Xinyu,
YUAN Jiaying
College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China
Corresponding author: XIN Xin,xx@cuit.edu.cn ;
CLC number: X703.1
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:为研究磁性硅球(Fe3O4@SiO2)对序批式活性污泥反应器(SBR)污水处理系统中脱氮除磷性能的影响,建立了3个相同的SBR (编号依次为1号、2号和3号),在2号和3号反应器中分别投加0.5 g·L?1的纳米Fe3O4和Fe3O4@SiO2,1号反应器为不投加任何磁性材料的对照组。结果表明:Fe3O4@SiO2对SBR中的污泥性能有显著的影响,3号反应器在运行20 d时,反应器内活性污泥结构完整,饱满密实,污泥粒径多集中分布在0.3~1.0 mm,颗粒化现象明显,而1号反应器无明显颗粒污泥,2号反应器虽能看到有少部分的颗粒污泥,但分布不均匀;Fe3O4@SiO2对污泥胞外蛋白(PN)、胞外多糖(PS)的含量有促进作用,并能改善污泥的沉降性能,第70 天时,3号反应器内PN和PS含量分别为318.89 mg·g?1和28.51 mg·g?1,污泥沉降指数(SVI)为35.22 mL·g?1,性能优于1号和2号反应器;在除污方面,2号和3号反应器对污水总氮(TN)和总磷(TP)去除率比1号反应器分别提升了10.80%、15.20%和9.40%、12.40%,3号反应器表现出最高的脱氮除磷性能;此外,在典型周期内,3号反应器对氮素及磷的去除速率明显高于1号反应器,在240 min内,1号和3号反应器对TN去除速率分别为4.56 mg·(L·h)?1和5.84 mg·(L·h)?1,对TP去除速率分别为0.44 mg·(L·h)?1和0.51 mg·(L·h)?1。由此可见,经SiO2包覆后所制备的Fe3O4@SiO2,提高了其在水体的分散性,增大了与污泥的接触程度,极大促进了污泥经磁聚、吸附作用富集到其表面形成颗粒污泥,并利于脱氮除磷等微生物截留和附着,提高活性污泥反应系统的脱氮除磷效果和去除速率。以上结果可为进一步探索磁性纳米材料对SBR 活性污泥脱氮除磷性能影响提供参考。
关键词: 磁性硅球/
序批式活性污泥法/
污泥沉降性能/
脱氮除磷
Abstract:The identical three sequencing batch reactors (SBRs) were set up in order to illuminate the effects of Fe3O4@SiO2 on the performances and kinetics of nitrogen and phosphorus removal in the sequencing batch reactor (SBR). 0.5 g·L?1 nano-Fe3O4 and 0.5 g·L?1 nano-Fe3O4@SiO2 were added to SBR 2 and SBR 3, respectively, and compared with the control group of SBR 1 without addition of magnetic material. The results showed that nano-Fe3O4@SiO2 had significant influence on the sludge property in SBR. After 20 d running, the sludge in SBR 3 presented complete structure, fullness and compactness, and its particle size was mainly distributed in 0.3~1.0 mm, obvious granulation phenomenon occurred. However, no obvious granular sludge appeared in SBR 1, a few sludge granules with non-uniform distribution formed in SBR 2. Moreover, Fe3O4@SiO2 could promote the secretion of exopolysaccharides(EPS) and improve sludge sedimentation performance. On the 70th day, the contents of PN and PS in SBR 3 were 318.89 mg·g?1 and 28.51 mg·g?1, respectively, and sludge volume index(SVI) was 35.22 mL·g?1, and the sludge performance was better than that of SBR 1 and SBR 2. In the aspect of pollutants removal, compared with reactor 1, the removal efficiencies of total nitrogen(TN) and total phosphorus(TP) in SBR 2 and SBR 3 increased by 10.80% and 15.20%, 9.40% and 12.40%, respectively, and SBR 3 showed the highest performance on nitrogen and phosphorus removal. In addition, the removal rates of nitrogen and phosphorus in SBR 3 were significantly higher than those in SBR during the typical circle; during 240 min, the TN removal rates in SBR 1 and SBR 3 were 4.56 mg·(L·h)?1 and 5.84 mg·(L·h)?1, respectively, the TP removal rates in SBR 1 and SBR 3 were 0.44 mg·(L·h)?1,0.51 mg·(L·h)?1, respectively. Therefore, the silica-based magnetic particles (nano-Fe3O4@SiO2) could improve its dispersion in water and contact with sludge, then significantly promoted the formation of granular sludge through enrichment on the sludge surface by magnetic aggregation, adsorption functions, and was conducive to the interception and adsorption of the microbes of nitrogen and phosphorus removal. The removal efficiency and rate of nitrogen and phosphorus were improved. This study provides a theoretical basis for further exploring the effect of magnetic nanomaterials on the denitrification and phosphorus removal performance of SBR activated sludge.
Key words:silica-based magnetic particles/
sequencing batch activated sludge process/
sludge sedimentation performance/
nitrogen and phosphorous removal.
图1SBR实验装置流程示意图
Figure1.Schematic diagram of experiment device
下载: 全尺寸图片幻灯片
图2运行第20天时各个反应器中污泥形态
Figure2.Evolution of morphological observation in SBR on day 20
下载: 全尺寸图片幻灯片
图3各反应器中SVI值的变化
Figure3.Changes of SVI in the SBRs
下载: 全尺寸图片幻灯片
图4各反应器中MLSS及MLVSS值的变化
Figure4.Changes of MLSS and MLVSS in the SBRs
下载: 全尺寸图片幻灯片
图5各反应器内污泥PN和PS的变化
Figure5.Variations of PN and PS in the SBRs
下载: 全尺寸图片幻灯片
图6各反应器内COD的去除率的变化
Figure6.Changes of COD removal efficiency in the SBRs
下载: 全尺寸图片幻灯片
图7各反应器内TN去除率的变化
Figure7.Changes of TN removal efficiency in the SBRs
下载: 全尺寸图片幻灯片
图8各反应器内TP去除率的变化
Figure8.Changes of TP removal efficiency in the SBRs
下载: 全尺寸图片幻灯片
图9典型周期内脱氮除磷性能
Figure9.Performance of nitrogen and phosphorus removal in typical cycle
下载: 全尺寸图片幻灯片
[1] | WANG B Z, LI J, WANG L, et al. Mechanism of phosphorus removal by SBR submerged biofilm system[J]. Water Resource, 1998, 32: 2633-2638. |
[2] | 任小玲, 周迟骏. 废水生物处理技术发展浅谈[J]. 化工时刊, 2004, 18(2): 32-34. doi: 10.3969/j.issn.1002-154X.2004.02.010 |
[3] | SUANON F, SUN Q, MAMA D, et al. Effect of nanoscale zero-valent iron and magnetite (Fe3O4) on the fate of metals during anaerobic digestion of sludge[J]. Water Research, 2016, 88: 897-903. doi: 10.1016/j.watres.2015.11.014 |
[4] | ABELSALAMA E, SAMERB M, ATTIA Y A. Comparison of nanoparticles effects on biogas and methane production from anaerobic digestion of cattle dung slurry[J]. Renewable Energy, 2016, 87: 592-598. doi: 10.1016/j.renene.2015.10.053 |
[5] | BAGHERI M, MASTERI-FARAHANI M, GHORBANI M. Synthesis and characterization of heteropoly tungstate-ionic liquid supported on the surface of silica coated magnetite nanoparticles[J]. Journal of Magnetism and Magnetic Materials, 2013, 327: 58-63. doi: 10.1016/j.jmmm.2012.09.038 |
[6] | 陆光立, 赵庆祥. 磁粉活性污泥法工艺技术研究[J]. 城市环境与城市生态, 1998, 11(2): 10-12. |
[7] | 孙水裕, 刘鸿, 谢光炎, 等. 磁粉强化活性污泥法处理餐饮废水的研究[J]. 环境污染与防治, 2003, 25(3): 170-172. doi: 10.3969/j.issn.1001-3865.2003.03.015 |
[8] | 任月明, 魏希柱, 马军, 等. 纳米磁粉生物反应系统处理效能研究[J]. 哈尔滨工业大学学报, 2008, 40(8): 1247-1251. doi: 10.3321/j.issn:0367-6234.2008.08.015 |
[9] | 麻海珍, 吴志庆, 牛志卿. 磁场对紫色非硫光合细菌脱氢酶活性影响[J]. 环境科学, 1995, 16(3): 3-5. |
[10] | 鲍晓磊, 强志民, 贲伟伟, 等. 磁性纳米复合材料CoFeM48对水中磺胺类抗生素的吸附去除研究[J]. 环境科学学报, 2013, 33(2): 401-407. |
[11] | BAKHTEEVA Y, MEDVEDEVA L, UIMIN M, et al. Magnetic sedimentation and aggregation of Fe3O4@SiO2 nanoparticles in water medium[J]. Separation and Purification Technology, 2016, 159: 35-42. doi: 10.1016/j.seppur.2015.12.043 |
[12] | GAO J, HUANG Y, HUANG F, et al. Progress in Study on core/shell magnetic TiO2[J]. Photocatalyst, 2007, 21: 119-123. |
[13] | BUMB A, BRECHBIEL M W, CHOYKE P L, et al. Synthesis and characterization of ultra-small superparamagnetic iron oxide nanoparticles thinly coated with silica[J]. Nanotechnology, 2008, 19(33): 335601. doi: 10.1088/0957-4484/19/33/335601 |
[14] | SELVAN S T, PATRA P K, ANG C Y, et al. Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells[J]. Angewandte Chemie, 2007, 46: 2448-2452. doi: 10.1002/anie.200604245 |
[15] | 辛铁军, 张和鹏, 马明亮, 等. Fe3O4@TiO2核壳磁性纳米材料的制备及表征[J]. 功能材料, 2014, 45(1): 1072-1077. doi: 10.3969/j.issn.1001-9731.2014.01.016 |
[16] | 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. |
[17] | 朱亮, 徐向阳, 罗伟国, 等. 废水生物处理好氧污泥颗粒化研究进展[J]. 环境科学, 2007, 28(11): 2657-2663. doi: 10.3321/j.issn:0250-3301.2007.11.044 |
[18] | 林永波, 张丹. 磁性活性污泥在废水处理中作用机理的探讨[J]. 环境科学与管理, 2007, 32(7): 80-82. doi: 10.3969/j.issn.1673-1212.2007.07.025 |
[19] | 潘涌璋, 张志永, 师波. 磁性载体生物膜反应器处理生活污水的试验研究[J]. 中国环境科学, 2011, 31(5): 734-739. |
[20] | 董青, 欧阳立明, 刘建文, 等. 纳米磁粉固定化酶催化合成α-D葡萄糖-1-磷酸[J]. 催化学报, 2010, 31(10): 1227-1232. |
[21] | TERASHIMA Y, OZAKI H, SEKINE M. Removal of dissolved heavy metals by chemical coagulation magnetic seeding and high gradient magnetic filtration[J]. Water Research, 1986, 20(5): 537-545. doi: 10.1016/0043-1354(86)90017-5 |
Turn off MathJax -->
点击查看大图
图( 9)
计量
文章访问数:753
HTML全文浏览数:753
PDF下载数:30
施引文献:0
出版历程
收稿日期:2019-06-09
录用日期:2019-11-14
网络出版日期:2020-03-25
-->刊出日期:2020-03-01
-->
磁性硅球对SBR活性污泥脱氮除磷性能的影响
管蕾,信欣,,
刘琴,
杨豪,
刘洁,
罗彤,
樊馨宇,
袁佳颖
通讯作者: 信欣,xx@cuit.edu.cn ;
作者简介: 管蕾(1992—),女,硕士研究生。研究方向:水污染控制及资源化。E-mail:1149483871@qq.com 成都信息工程大学资源环境学院,成都 610225
收稿日期: 2019-06-09
录用日期: 2019-11-14
网络出版日期: 2020-03-25
关键词: 磁性硅球/
序批式活性污泥法/
污泥沉降性能/
脱氮除磷
摘要:为研究磁性硅球(Fe3O4@SiO2)对序批式活性污泥反应器(SBR)污水处理系统中脱氮除磷性能的影响,建立了3个相同的SBR (编号依次为1号、2号和3号),在2号和3号反应器中分别投加0.5 g·L?1的纳米Fe3O4和Fe3O4@SiO2,1号反应器为不投加任何磁性材料的对照组。结果表明:Fe3O4@SiO2对SBR中的污泥性能有显著的影响,3号反应器在运行20 d时,反应器内活性污泥结构完整,饱满密实,污泥粒径多集中分布在0.3~1.0 mm,颗粒化现象明显,而1号反应器无明显颗粒污泥,2号反应器虽能看到有少部分的颗粒污泥,但分布不均匀;Fe3O4@SiO2对污泥胞外蛋白(PN)、胞外多糖(PS)的含量有促进作用,并能改善污泥的沉降性能,第70 天时,3号反应器内PN和PS含量分别为318.89 mg·g?1和28.51 mg·g?1,污泥沉降指数(SVI)为35.22 mL·g?1,性能优于1号和2号反应器;在除污方面,2号和3号反应器对污水总氮(TN)和总磷(TP)去除率比1号反应器分别提升了10.80%、15.20%和9.40%、12.40%,3号反应器表现出最高的脱氮除磷性能;此外,在典型周期内,3号反应器对氮素及磷的去除速率明显高于1号反应器,在240 min内,1号和3号反应器对TN去除速率分别为4.56 mg·(L·h)?1和5.84 mg·(L·h)?1,对TP去除速率分别为0.44 mg·(L·h)?1和0.51 mg·(L·h)?1。由此可见,经SiO2包覆后所制备的Fe3O4@SiO2,提高了其在水体的分散性,增大了与污泥的接触程度,极大促进了污泥经磁聚、吸附作用富集到其表面形成颗粒污泥,并利于脱氮除磷等微生物截留和附着,提高活性污泥反应系统的脱氮除磷效果和去除速率。以上结果可为进一步探索磁性纳米材料对SBR 活性污泥脱氮除磷性能影响提供参考。
English Abstract
Impact of Fe3O4@SiO2 on the performances of nitrogen and phosphorus removal in a SBR
GUAN Lei,XIN Xin,,
LIU Qin,
YANG Hao,
LIU Jie,
LUO Tong,
FAN Xinyu,
YUAN Jiaying
Corresponding author: XIN Xin,xx@cuit.edu.cn ;
College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, ChinaReceived Date: 2019-06-09
Accepted Date: 2019-11-14
Available Online: 2020-03-25
Keywords: silica-based magnetic particles/
sequencing batch activated sludge process/
sludge sedimentation performance/
nitrogen and phosphorous removal
Abstract:The identical three sequencing batch reactors (SBRs) were set up in order to illuminate the effects of Fe3O4@SiO2 on the performances and kinetics of nitrogen and phosphorus removal in the sequencing batch reactor (SBR). 0.5 g·L?1 nano-Fe3O4 and 0.5 g·L?1 nano-Fe3O4@SiO2 were added to SBR 2 and SBR 3, respectively, and compared with the control group of SBR 1 without addition of magnetic material. The results showed that nano-Fe3O4@SiO2 had significant influence on the sludge property in SBR. After 20 d running, the sludge in SBR 3 presented complete structure, fullness and compactness, and its particle size was mainly distributed in 0.3~1.0 mm, obvious granulation phenomenon occurred. However, no obvious granular sludge appeared in SBR 1, a few sludge granules with non-uniform distribution formed in SBR 2. Moreover, Fe3O4@SiO2 could promote the secretion of exopolysaccharides(EPS) and improve sludge sedimentation performance. On the 70th day, the contents of PN and PS in SBR 3 were 318.89 mg·g?1 and 28.51 mg·g?1, respectively, and sludge volume index(SVI) was 35.22 mL·g?1, and the sludge performance was better than that of SBR 1 and SBR 2. In the aspect of pollutants removal, compared with reactor 1, the removal efficiencies of total nitrogen(TN) and total phosphorus(TP) in SBR 2 and SBR 3 increased by 10.80% and 15.20%, 9.40% and 12.40%, respectively, and SBR 3 showed the highest performance on nitrogen and phosphorus removal. In addition, the removal rates of nitrogen and phosphorus in SBR 3 were significantly higher than those in SBR during the typical circle; during 240 min, the TN removal rates in SBR 1 and SBR 3 were 4.56 mg·(L·h)?1 and 5.84 mg·(L·h)?1, respectively, the TP removal rates in SBR 1 and SBR 3 were 0.44 mg·(L·h)?1,0.51 mg·(L·h)?1, respectively. Therefore, the silica-based magnetic particles (nano-Fe3O4@SiO2) could improve its dispersion in water and contact with sludge, then significantly promoted the formation of granular sludge through enrichment on the sludge surface by magnetic aggregation, adsorption functions, and was conducive to the interception and adsorption of the microbes of nitrogen and phosphorus removal. The removal efficiency and rate of nitrogen and phosphorus were improved. This study provides a theoretical basis for further exploring the effect of magnetic nanomaterials on the denitrification and phosphorus removal performance of SBR activated sludge.