2.重庆科技学院建筑工程学院,重庆 401331
1.College of Environment and Ecology, Chongqing University, Chongqing 400045, China
2.School of Civil Engineering and Architecture, Chongqing University of Science & Technology, Chongqing 401331, China
厌氧氨氧化菌生长条件复杂、影响因素多,其工艺系统运行控制复杂,为解决上述问题,研究构建了1个多级神经网络预测模型,以提高SBBR单级自养脱氮厌氧氨氧化系统出水总氮去除率预测精度,并确定了系统工程应用的关键控制参数。一级神经网络模型通过灰色关联度分析,对影响出水总氮去除率的关键性指标进行预测;二级神经网络模型基于一级模型增加数据维度,并通过改进粒子群算法优化网络、借鉴遗传算法变异的思想扩大搜索范围,提高了出水总氮去除率的预测精度。多级神经网络模型预测结果表明,其总氮去除率平均相对误差为0.54%,相对误差为5.76%,均方根误差为1.132 1,预测数据基本上与实际值相符;与其他预测模型相比较,该模型表现出较优的预测精度。进一步分析发现,通过控制工艺系统的曝气量调节出水亚氮浓度,是保证工艺反应的稳定和实现厌氧氨氧化工艺工程应用的有效控制方式。
Due to the complex growth conditions and multiple factors of anaerobic ammonium oxidizing (anammox) bacteria, the operation and control of the anammox process is very complex. In this study, a multi-level neural network prediction model was developed to improve the prediction accuracy of total nitrogen removal rate in the effluent of a single-stage SBBR autotrophic anammox system, and to determine the key control parameters for engineering applications of the system. The first-level artificial neural network model predicted the key indicators affecting the total nitrogen removal rate in the effluent through gray correlation analysis. The second-level artificial neural network model added the data dimension based on the first-level model, its artificial neural network was optimized with improving particle swarm optimization algorithm and its search range of particles was expanded by using the idea of genetic algorithm variation, then its prediction accuracy of total nitrogen removal rate was improved. The results showed that the predicted data basically matched with the actual value, the average relative error of total nitrogen removal rate was 0.54%, the relative error was 5.76%, and the root mean square error was 1.132 1. Compared with other predictive models, this model showed better prediction accuracy. Further analysis showed that it would be an effective control method to adjust the nitrous concentration in the effluent by controlling the aeration rate of the process system, which can ensure the stability of the process reaction and realize the engineering application of anammox process.
.
Schematic diagram of experimental device
Multilevel neural network model structure
Flow chart of multi-Level neural network prediction algorithm
Optimal fitness curve of improved PSO algorithm
Prediction results based on the first-level prediction model
TN removal rate prediction results of each model
[1] | JETTEN M S M, STROUS M, VAN DE PAS-SCHOONEN K T, et al. The anaerobic oxidation of ammonium[J]. FEMS Microbiology Reviews, 1998, 22(5): 421-437. doi: 10.1111/j.1574-6976.1998.tb00379.x |
[2] | MA B, WANG S, CAO S, et al. Biological nitrogen removal from sewage via anammox: Recent advances[J]. Bioresource Technology, 2016, 200: 981-990. doi: 10.1016/j.biortech.2015.10.074 |
[3] | CAO Y S, VAN LOOSDRECHT M C M, DAIGGER G T. Mainstream partial nitritation-anammox in municipal wastewater treatment: Status, bottlenecks, and further studies[J]. Applied Microbiology and Biotechnology, 2017, 101(4): 1365-1383. doi: 10.1007/s00253-016-8058-7 |
[4] | 唐崇俭. 厌氧氨氧化工艺特性与控制技术的研究[D]. 杭州: 浙江大学, 2011. |
[5] | PICOS-BENITEZ A R, LOPEZ-HINCAPIE J D, CHAVEZ-RAMIREZ A U, et al. Artificial intelligence based model for optimization of COD removal efficiency of an up-flow anaerobic sludge blanket reactor in the saline wastewater treatment[J]. Water Science and Technology, 2017, 75(6): 1351-1361. doi: 10.2166/wst.2017.005 |
[6] | SEEBOONRUANG U. A statistical assessment of the impact of land uses on surface water quality indexes[J]. Journal of Environmental Management, 2012, 101: 134-142. |
[7] | 蒋白懿, 牟天蔚, 王玲萍. 灰色遗传神经网络模型对居民年需水量预测[J]. 给水排水, 2018, 54(1): 137-142. doi: 10.3969/j.issn.1002-8471.2018.01.028 |
[8] | 黄辉, 马思佳, 王庆, 等. 多参数影响下污水总氮浓度预测最优方法研究[J]. 南京大学学报(自然科学), 2017, 53(6): 1194-1202. |
[9] | ZHANG H G, CUI L L, ZHANG X, et al. Data-driven robust approximate optimal tracking control for unknown general nonlinear systems using adaptive dynamic programming Method[J]. IEEE Transactions on Neural Networks, 2011, 22(12): 2226-2236. doi: 10.1109/TNN.2011.2168538 |
[10] | ZHAO Y, GUO L, LIANG J B, et al. Seasonal artificial neural network model for water quality prediction via a clustering analysis method in a wastewater treatment plant of China[J]. Desalination and Water Treatment, 2016, 57(8): 3452-3465. doi: 10.1080/19443994.2014.986202 |
[11] | YE J, ZHANG P, HOFFMANN E, et al. Comparison of response surface methodology and artificial neural network in optimization and prediction of acid activation of bauxsol for phosphorus adsorption[J]. Water, Air & Soil Pollution, 2014, 225(12): 2225. |
[12] | BAGHERI M, MIRBAGHERI S A, BAGHERI Z, et al. Modeling and optimization of activated sludge bulking for a real wastewater treatment plant using hybrid artificial neural networks-genetic algorithm approach[J]. Process Safety and Environmental Protection, 2015, 95: 12-25. doi: 10.1016/j.psep.2015.02.008 |
[13] | 乔俊飞, 逄泽芳, 韩红桂. 基于改进粒子群算法的污水处理过程神经网络优化控制[J]. 智能系统学报, 2012, 7(5): 429-436. doi: 10.3969/j.issn.1673-4785.201205034 |
[14] | 李佟, 李军. 基于BP神经网络与马尔可夫链的污水处理厂脱氮效果模拟预测[J]. 环境科学学报, 2016, 36(2): 576-581. |
[15] | HU K, WAN J Q, MA Y W, et al. A fuzzy neural network model for monitoring A2/O process using on-line monitoring parameters[J]. Journal of Environmental Science and Health, 2012, 47(5): 744-754. |
[16] | PLAZAS-NOSSA L, HOFER T, GRUBER G, et al. Forecasting of UV-Vis absorbance time series using artificial neural networks combined with principal component analysis[J]. Water Science and Technology, 2017, 75(4): 765-774. doi: 10.2166/wst.2016.524 |
[17] | 乔俊飞, 安茹, 韩红桂. 基于RBF神经网络的出水氨氮预测研究[J]. 控制工程, 2016, 23(9): 1301-1305. |
[18] | 刘思峰, 杨英杰, 吴利丰, 等. 灰色系统理论及其应用[M]. 7版. 北京: 科学出版社, 2014. |
[19] | DU R, CAO S B, LI B K, et al. Performance and microbial community analysis of a novel DEAMOX based on partial-denitrification and anammox treating ammonia and nitrate wastewaters[J]. Water Research, 2017, 108: 46-56. doi: 10.1016/j.watres.2016.10.051 |
[20] | DECANETE J F, DEL SAZ-OROZCO P, BARATTI R, et al. Soft-sensing estimation of plant effluent concentrations in a biological wastewater treatment plant using an optimal neural network[J]. Expert Systems with Applications, 2016, 63: 8-19. doi: 10.1016/j.eswa.2016.06.028 |
[21] | LACKNER S, GILBERT E M, VLAEMINCK S E, et al. Full-scale partial nitritation/anammox experiences: An application survey[J]. Water Research, 2014, 55: 292-303. doi: 10.1016/j.watres.2014.02.032 |
[22] | 严聪聪, 徐凯琳, 张建昆, 等. 基于改进的粒子群算法的活性污泥神经网络控制模型[J]. 给水排水, 2018, 54(1): 130-136. doi: 10.3969/j.issn.1002-8471.2018.01.027 |
[23] | 王元月, 魏源送. 新型控制模式下短程硝化/厌氧氨氧化法处理污泥水[J]. 中国给水排水, 2013, 29(17): 24-27. doi: 10.3969/j.issn.1000-4602.2013.17.006 |