删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

内循环微电解对天然气中H2S的处理及其工艺的优化

本站小编 Free考研考试/2021-12-31

武传涛,
韩严和,,
符一鸣
北京石油化工学院环境工程系,北京 102617
作者简介: 武传涛(1996—),男,硕士研究生。研究方向:铁碳微电解处理技术。E-mail:1218008836@qq.com.
通讯作者: 韩严和,hanyanhe@bipt.edu.cn ;

中图分类号: X701.3


Treating H2S in natural gas by the internal circulation micro-electrolysis and process optimization

WU Chuantao,
HAN Yanhe,,
FU Yiming
Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
Corresponding author: HAN Yanhe,hanyanhe@bipt.edu.cn ;

CLC number: X701.3

-->

摘要
HTML全文
(10)(3)
参考文献(28)
相关文章
施引文献
资源附件(0)
访问统计

摘要:天然气已经成为工业生产中的重要能源,但天然气中含有大量的H2S,在加工运输过程中会造成管道腐蚀等问题。因此,天然气脱硫是其加工利用过程中重要的一步。将内循环微电解技术用于天然气中H2S的处理,分别考察了反应时间、通气速率、铁炭比和pH对H2S去除效果的影响,筛选出影响H2S去除效果的主控因子,采用Box-Behnken响应曲面法对处理H2S的反应条件进行了优化。最终确定的最佳反应条件:反应时间为30 min、通气速率为0.33 m3·h?1、铁炭比为3∶2和pH=6.1,在最佳反应条件下进行验证实验,结果表明,H2S的去除率可达到84.6%,其落在模型预测值的95%置信区间(80.16%~100%)内,经内循环微电解技术处理后,H2S含量能够达到《天然气》(GB 17820-2012)中三类标准。因此,内循环微电解技术可以有效地去除天然气中的H2S,研究结果可为内循环微电解应用于天然气中H2S的处理提供参考,同时为天然气中H2S的处理提供了一种简单高效的技术方法。
关键词: 内循环微电解/
天然气/
H2S/
响应曲面优化

Abstract:Natural gas has become an important energy in industrial production. However, H2S in natural gas will cause problems such as pipeline corrosion during processing and transportation. Therefore, the desulfurization from natural gas is a very important step in its processing and utilization. In this study, the internal circulation micro-electrolysis technique was applied to treating H2S in natural gas. Effects of reaction time, aeration rate, iron-carbon ratio and pH on H2S removal efficiency were studied. And the master factors affecting H2S removal were selected. The response surface method was used to optimize the reaction conditions for H2S treatment. The optimal reaction conditions were determined as follows: reaction time of 30 min, aeration rate of 0.33 m3·h?1, iron-carbon ratio of 3∶2 and pH=6.1. The verification test was carried out under the optimal reaction conditions, and the results showed that H2S removal rate could reach 84.6%, which fell within the 95% confidence interval (80.16%~100%) of the model prediction value. H2S content in natural gas could reach the third standard of Natural Gas (GB 17820-2012) after treatment by internal circulation micro-electrolysis technology. Therefore, the internal circulation micro-electrolysis technology can effectively remove H2S from natural gas. It can provide guidance for H2S treatment in natural gas, as well as a simple and efficient technical method.
Key words:internal circulation micro-electrolysis/
natural gas/
H2S/
response surface optimization.

加载中

图1内循环反应器结构图
Figure1.Schematic diagram of internal circulation reactor


下载: 全尺寸图片幻灯片


图2实验流程示意图
Figure2.Schematic diagram of experimental process


下载: 全尺寸图片幻灯片


图3反应时间对H2S去除率的影响
Figure3.Effect of reaction time on H2S removal efficiency


下载: 全尺寸图片幻灯片


图4通气速率对H2S去除率的影响
Figure4.Effect of ventilation rate on H2S removal efficiency


下载: 全尺寸图片幻灯片


图5铁炭比对H2S去除率的影响
Figure5.Effect of iron-carbon ratio on H2S removal efficiency


下载: 全尺寸图片幻灯片


图6pH对H2S去除率的影响
Figure6.Effect of pH on H2S removal efficiency


下载: 全尺寸图片幻灯片


图7H2S去除率的实际值与预测值分布图
Figure7.Distribution profile of actual and predicted values of H2S removal efficiency


下载: 全尺寸图片幻灯片


图8铁炭比和通气速率对H2S去除率交互影响的响应曲面图和等高线图
Figure8.3D surface and contour of interaction between iron-carbon ratio and ventilation rate on H2S removal efficiency


下载: 全尺寸图片幻灯片


图9铁炭比和pH对H2S去除率交互影响的响应曲面和等高线图
Figure9.3D surface and contour of interaction between iron-carbon ratio and pH on H2S removal efficiency


下载: 全尺寸图片幻灯片


图10通气速率和pH对H2S去除率交互影响的响应曲面和等高线图
Figure10.3D surface and contour of interaction between ventilation rate and pH on H2S removal efficiency


下载: 全尺寸图片幻灯片

表1实验设计因素与水平
Table1.Influence factors and level design of experiment
因素编码编码水平
?101
铁炭比A1∶23∶22∶1
通气速率/(m3·h?1)B0.20.40.8
pHC6710

因素编码编码水平
?101
铁炭比A1∶23∶22∶1
通气速率/(m3·h?1)B0.20.40.8
pHC6710

下载: 导出CSV
表2响应曲面实验运行结果
Table2.Response surface experimental program and results
序号ABCH2S去除率/%
100070.91
201?148.09
300090.5
400081.46
501137.5
60?1141.45
7?10?165.37
810169.66
900089.29
100?1?180.91
111?1067.74
1211047.25
13?10159.13
1410?188.19
1500090.5
16?11042.31
17?1?1056.75

序号ABCH2S去除率/%
100070.91
201?148.09
300090.5
400081.46
501137.5
60?1141.45
7?10?165.37
810169.66
900089.29
100?1?180.91
111?1067.74
1211047.25
13?10159.13
1410?188.19
1500090.5
16?11042.31
17?1?1056.75

下载: 导出CSV
表3回归系数和模型的显著性分析
Table3.Regression coefficients and significant analysis
因素回归系数标准误差平方和FP显著性
截距(模型)84.533.415 110.249.760.003 3显著
A(铁炭比)6.162.7303.565.220.056 2显著
B(通气速率)?8.962.7642.6111.050.012 7显著
C(pH)?9.352.7699.7512.030.010 4显著
AB?1.513.819.150.160.703 4不显著
AC?3.073.8137.760.650.446 9不显著
BC7.223.81208.373.580.100 3不显著
A2?6.213.72162.362.790.138 7不显著
B2?24.813.722 591.6844.560.000 3显著
C2?7.733.72251.94.330.076 0显著
失拟项118.240.550.676 9不显著

因素回归系数标准误差平方和FP显著性
截距(模型)84.533.415 110.249.760.003 3显著
A(铁炭比)6.162.7303.565.220.056 2显著
B(通气速率)?8.962.7642.6111.050.012 7显著
C(pH)?9.352.7699.7512.030.010 4显著
AB?1.513.819.150.160.703 4不显著
AC?3.073.8137.760.650.446 9不显著
BC7.223.81208.373.580.100 3不显著
A2?6.213.72162.362.790.138 7不显著
B2?24.813.722 591.6844.560.000 3显著
C2?7.733.72251.94.330.076 0显著
失拟项118.240.550.676 9不显著

下载: 导出CSV

[1] NASSAR I M, EL-DIN M R N, MORSI R E, et al. Eco-friendly nanocomposite materials to scavenge hazard gas H2S through fixed-bed reactor in petroleum application[J]. Renewable & Sustainable Energy Reviews, 2016, 65: 101-112.
[2] 杨晓燕, 沈伯雄, 赵宁. 选择性催化氧化H2S的催化剂和载体研究进展[J]. 环境工程, 2010, 28(S1): 389-393.
[3] 胡天友, 熊钢, 何金龙, 等. 胺法脱硫装置溶液发泡预防及控制措施[J]. 天然气工业, 2009, 29(3): 101-103. doi: 10.3787/j.issn.1000-0976.2009.03.030
[4] 刘健, 张述伟, 孙道青. 低温甲醇法净化天然气工艺流程的研究[J]. 天然气化工(C1化学与化工), 2007, 32(5): 47-50.
[5] 巴迎迎, 张通, 吕静, 等. 一株碱性脱除硫酸盐细菌的筛选及其生长特性研究[J]. 环境工程学报, 2009, 3(9): 1639-1642.
[6] 高敏, 李本高, 余伟发. LO-CAT硫磺回收装置配套系列脱硫催化剂研制与应用[J]. 石油炼制与化工, 2012, 43(5): 45-48. doi: 10.3969/j.issn.1005-2399.2012.05.011
[7] 吴家文, 崔红霞, 姚为英, 等. 大庆油田天然气干法脱硫剂的比选与应用[J]. 油田化学, 2007, 24(4): 328-332. doi: 10.3969/j.issn.1000-4092.2007.04.010
[8] MARZOUK S A M, AL-MARZOUQI M H, ABDULLATIF N, et al. Removal of percentile level of H2S from pressurized H2S-CH4 gas mixture using hollow fiber membrane contactors and absorption solvents[J]. Journal of Membrane Science, 2010, 360(1/2): 436-441.
[9] 叶春松, 黄建伟, 刘通, 等. 燃煤电厂烟气脱硫废水处理方法与技术进展[J]. 环境工程, 2017, 35(11): 10-13.
[10] 汤立红, 郭惠斌, 李凯, 等. 工业中脱硫技术研究现状及进展[J]. 材料导报, 2015, 29(13): 118-122.
[11] 马路, 王树立, 王剑, 等. 膜吸收器碳酸钠溶液脱除天然气中硫化氢的研究[J]. 天然气化工(C1化学与化工), 2013, 38(5): 51-54.
[12] 王剑, 李恩田, 王树立, 等. 真空膜蒸馏法再生天然气脱硫废液的研究[J]. 水处理技术, 2014, 40(1): 88-91.
[13] NING X A, WEN W B, ZHANG Y P, et al. Enhanced dewaterability of textile dyeing sludge using micro-electrolysis pretreatment[J]. Journal of Environmental Management, 2015, 161: 181-187.
[14] WANG L Q, YANG Q, WANG D B, et al. Advanced landfill leachate treatment using iron-carbon microelectrolysis-Fenton process: Process optimization and column experiments[J]. Journal of Hazardous Materials, 2016, 318: 460-467. doi: 10.1016/j.jhazmat.2016.07.033
[15] 汪彩琴, 高心怡, 陈辉, 等. 微电解技术处理难降解工业废水的研究进展[J]. 化工环保, 2016, 36(5): 477-481. doi: 10.3969/j.issn.1006-1878.2016.05.001
[16] WANG Y, WU X W, YI J, et al. Pretreatment of printing and dyeing wastewater by Fe/C micro-electrolysis combined with H2O2 process[J]. Water Science and Technology, 2018, 77: 707-717.
[17] XIE R S, WU M M, QU G F, et al. Treatment of coking wastewater by a novel electric assisted micro-electrolysis filter[J]. Journal of Environmental Sciences-China, 2018, 66: 165-172. doi: 10.1016/j.jes.2017.05.034
[18] ZHANG Z W, HAN Y X, XU C Y, et al. Microbial nitrate removal in biologically enhanced treated coal gasification wastewater of low COD to nitrate ratio by coupling biological denitrification with iron and carbon micro-electrolysis[J]. Bioresource Technology, 2018, 262: 65-73. doi: 10.1016/j.biortech.2018.04.059
[19] QIN G, GONG D. Pretreatment of petroleum refinery wastewater by microwave-enhanced Fe0/GAC micro-electrolysis[J]. Desalination and Water Treatment, 2014, 52(13/14/15): 2512-2518. doi: 10.1080/19443994.2013.811120
[20] YUAN D H, LIU Y Q, MAO X F, et al. Treatment performance and degradation process of contaminants in vitamin B-12 wastewater[J]. Environmental Engineering Science, 2018, 35(7): 673-683. doi: 10.1089/ees.2017.0214
[21] 李长海. 强化微电解预处理再生造纸废水实验研究[J]. 工业水处理, 2015, 35(11): 48-51. doi: 10.11894/1005-829x.2015.35(11).048
[22] 张雷, 韩严和, 刘美丽, 等. 基于内循环微电解的焦化污水深度处理[J]. 环境工程学报, 2018, 12(5): 1462-1470. doi: 10.12030/j.cjee.201710103
[23] 俸志荣, 焦纬洲, 刘有智, 等. 铁碳微电解处理含硝基苯废水[J]. 化工学报, 2015, 66(3): 1150-1155. doi: 10.11949/j.issn.0438-1157.20141329
[24] 王心宇, 詹未, 张永, 等. 饮用水中硫化物现场检测方法与实验室方法的比较[J]. 环境与健康杂志, 2018, 35(5): 449-452.
[25] 罗剑非, 陈威, 王宗平. 铁碳微电解预处理腈纶废水的试验研究[J]. 工业水处理, 2018, 38(9): 91-93. doi: 10.11894/1005-829x.2018.38(9).091
[26] 易妍妍, 王智慧, 杨超, 等. 静止非牛顿流体中气泡生成过程的传质[J]. 化工学报, 2015, 66(11): 4335-4341.
[27] 白帆, 李杰, 王亚娥, 等. 响应面法优化海绵铁/碳微电解技术预处理腈纶废水[J]. 环境工程学报, 2017, 11(7): 3957-3964. doi: 10.12030/j.cjee.201605006
[28] 中国石油西南油气田公司天然气研究院, 中国石油集团工程设计有限责任公司西南分公司天然气: GB 17820-2012[S]. 北京: 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2012.



加载中


Turn off MathJax -->
WeChat 点击查看大图



图( 10)表( 3)
计量

文章访问数:938
HTML全文浏览数:938
PDF下载数:22
施引文献:0
出版历程

收稿日期:2019-05-30
录用日期:2019-10-14
网络出版日期:2020-03-25
-->刊出日期:2020-03-01




-->








内循环微电解对天然气中H2S的处理及其工艺的优化

武传涛,
韩严和,,
符一鸣
通讯作者: 韩严和,hanyanhe@bipt.edu.cn ;
作者简介: 武传涛(1996—),男,硕士研究生。研究方向:铁碳微电解处理技术。E-mail:1218008836@qq.com 北京石油化工学院环境工程系,北京 102617
收稿日期: 2019-05-30
录用日期: 2019-10-14
网络出版日期: 2020-03-25
关键词: 内循环微电解/
天然气/
H2S/
响应曲面优化
摘要:天然气已经成为工业生产中的重要能源,但天然气中含有大量的H2S,在加工运输过程中会造成管道腐蚀等问题。因此,天然气脱硫是其加工利用过程中重要的一步。将内循环微电解技术用于天然气中H2S的处理,分别考察了反应时间、通气速率、铁炭比和pH对H2S去除效果的影响,筛选出影响H2S去除效果的主控因子,采用Box-Behnken响应曲面法对处理H2S的反应条件进行了优化。最终确定的最佳反应条件:反应时间为30 min、通气速率为0.33 m3·h?1、铁炭比为3∶2和pH=6.1,在最佳反应条件下进行验证实验,结果表明,H2S的去除率可达到84.6%,其落在模型预测值的95%置信区间(80.16%~100%)内,经内循环微电解技术处理后,H2S含量能够达到《天然气》(GB 17820-2012)中三类标准。因此,内循环微电解技术可以有效地去除天然气中的H2S,研究结果可为内循环微电解应用于天然气中H2S的处理提供参考,同时为天然气中H2S的处理提供了一种简单高效的技术方法。

English Abstract






--> --> --> 随着环保意识的增强,天然气作为一种清洁能源被广泛使用,但天然气中含有的大量H2S,不仅会对设备和管线造成腐蚀,而且也是造成酸雨的污染源之一,严重危害环境和人类健康[1-2]。因此,脱除天然气中的H2S,对保护设备、管线和环境等具有重大意义。
目前,工业中应用较多的天然气脱硫工艺主要有湿法、干法和膜法脱硫。湿法脱硫技术主要有乙醇胺(MEA)法[3]、低温甲醇法[4]、DDS脱硫技术[5]和LO-CAT硫磺回收技术[6];干法脱硫技术主要有活性炭法、分子筛法和氧化铁法[7];膜法脱硫技术主要有膜基吸收法和膜蒸馏法[8]。尽管这些技术已经在工程中得到了较为广泛的应用,却不能忽视其在实际应用中存在的问题:湿法脱硫技术存在工艺复杂、投资费用高、能耗大和产生大量的脱硫废水等缺点[9];干法脱硫技术存在脱硫条件要求严格、不适用于高浓度H2S脱除和再生困难等缺点[10];膜法脱硫技术存在制膜工艺较为复杂、膜的使用寿命短和处理后浓缩液难处理等缺点[11-12]。因此,亟需研发一种工艺简单、成本低、安全高效的脱硫技术,探究内循环微电解技术应用于天然气中H2S处理的可行性及其对天然气中H2S的处理效果,旨在为内循环微电解应用于天然气中H2S的处理提供指导,同时为天然气中H2S处理提供一种简单高效的技术方法。
内循环微电解技术将铁作为阳极,将活性炭作为阴极,当混合浸入废水时,形成大量的微小原电池,其主要通过微电池、氧化还原、絮凝、吸附沉淀和微电场附集等作用去除废水中的污染物[13-14]。内循环微电解具有成本低、工艺简单、使用范围广、使用寿命长、处理效果好及操作维护简单等优点[15],在印染[16]、焦化[17-18]、石油[19]、制药[20]、造纸[21]等工业废水的处理中得到了广泛的应用,对COD和色度的去除具有很好的效果,但内循环微电解技术应用于天然气脱硫的研究却鲜有报道。
本研究采用内循环微电解技术处理天然气中的H2S,考察了反应时间、通气速率、铁炭比和pH等4个因素对H2S去除效果的影响,筛选出3个影响H2S去除效果的主控因子,采用Box-Behnken响应曲面法,对处理H2S的反应条件进行了优化,以得到内循环微电解应用于天然气中H2S的处理的最佳工艺条件。最终可以得出内循环微电解应用于天然气中H2S的处理是可行的,研究结果为内循环微电解应用于天然气中H2S的处理提供参考,同时,为天然气中H2S的处理提供了一种简单高效的技术方法。

实验中使用的NaOH、Na2S、盐酸和丙酮等试剂,均为分析纯;实验室用水为去离子水。使用的主要仪器有Multi3420型pH计、TD5002C分析天平、YQY-12氧气减压阀、CHYS-241硫化物测量仪、A14 H2S气瓶、LZB型空气流量计和内循环式反应器,反应器为自制,结构如图1所示。



实验装置如图2所示。在进行铁屑预处理时,首先用去离子水反复清洗3~5遍,以去除表面的灰尘,然后将铁屑置于丙酮溶液中浸泡30 min,去除表面的油污及其他杂质,再用5%的盐酸浸泡30 min,去除铁屑表面的氧化膜,使铁屑活化,最后用去离子水清洗至中性[22]


在进行活性炭预处理时,首先,用去离子水反复清洗3~5遍,以去除表面的灰尘和杂质,然后将活性炭浸泡在高浓度的Na2S溶液中3 d以上,以消除实验过程中活性炭吸附作用的影响[23]
将预处理后的铁屑和活性炭按照一定的质量比(总质量为300 g)混合后,置于内循环式反应器中,并在反应器中加入适量的水,气瓶中含有H2S的天然气(为了防止甲烷引起爆炸,本研究采用N2和H2S的混合气体进行模拟),用空气流量计控制流量,经过干燥器(防止水蒸气进入气体流量计和储气瓶而发生腐蚀泄露)干燥后,通入反应器中进行反应,尾部通过NaOH溶液吸收尾气中的H2S,以测定处理后H2S的剩余含量,计算H2S的去除率。

使用Multi3420型pH计进行pH的测定;处理后,H2S的剩余含量使用CHYS-241硫化物测量仪进行测定,此方法具有简便快捷的优点,准确度和精密度均可达到检测要求[24]
内循环微电解技术脱除天然气中H2S见反应式(1)和式(2),同时会有Fe(OH)3的生成(见式(3)),可以通过混凝沉淀作用加快FeS的沉淀。

1)单因素实验设计。通过控制变量,分别研究不同反应时间、通气速率、铁炭比和pH对H2S去除率的影响,筛选出影响H2S去除效果的3个主要因素。
2)响应曲面优化实验设计。在单因素实验的基础上,采用Design Expert软件中Box-Behnken法进行设计,以H2S去除率为响应值,确定3因素3水平的响应曲面分析实验,对实验结果进行ANOVA分析及二次回归拟合,确定模型的可行性。最终获得各因素间的交互作用对响应值的影响和最优反应条件。采用二阶模型[22]计算H2S去除率,计算方法如式(4)所示。
式中:Y为H2S去除率的预测值;${ \propto _0}$为偏移项;${ \propto _i}$为线性偏移系数;${ \propto _{ii}}$为二阶偏移系数;∝ij为交互作用系数。
3)验证实验设计。在模型预测的最佳反应条件下进行实验,测定H2S剩余含量,计算去除率,验证模型的可靠性。

1)反应时间对处理效果的影响。在实验中,天然气中H2S的初始含量为800 mg·m?3,在室温、通气速率为0.4 m3·h?1、铁炭比为1∶1和pH为7的条件下,研究了反应时间对H2S去除率的影响,实验结果如图3所示。由图3可见,随着反应时间的增加,H2S剩余含量逐渐减少,H2S去除率逐渐增大。反应30 min前,H2S剩余含量迅速减少,H2S去除率迅速增大,这是由于反应初期水中不断产生Fe2+,从而加速FeS的生成,同时氧化还原、絮凝沉淀等作用也起到很好的脱硫促进作用[25],进而可以迅速去除H2S;在30 min时,H2S剩余含量为377.5 mg·m?3,其去除率达到52.81%;而在反应30 min后,H2S剩余含量随着时间的延长缓慢减少,H2S去除率随着时间的延长缓慢升高,这主要是因为随着反应的进行,Fe被大量消耗,形成的原电池数量减少,从而使反应速率下降;在反应进行到120 min时,H2S剩余含量仅剩63.5 mg·m?3,去除率高达92.06%。由于在反应时间为30 min时,剩余H2S的浓度接近《天然气》(GB 17820-2012)中三类标准,综合因素优化和经济因素考虑,后续实验中的反应时间设为30 min。


2) 通气速率对处理效果的影响。控制天然气中H2S初始含量为800 mg·m?3,在室温、反应时间为30 min、铁炭比为1∶1和pH为7的条件下,研究通气速率对H2S去除率的影响,实验结果如图4所示。由图4可知,随着通气速率的增大,H2S剩余含量先减少后增加,H2S去除率先升高后降低,当通气速率为0.4 m3·h?1时,H2S剩余含量达到最低值,为387.5 mg·m?3,其去除率为51.56%;当通气速率小于0.4 m3·h?1时,H2S去除率随着通气速率的增大而升高,这是因为在一定条件下,传质系数会随着通气速率的增大而增大[26],天然气中的H2S与铁炭的接触更加充分,从而使处理效果越来越好。当通气速率大于0.4 m3·h?1时,H2S去除率随着通气速率的增大而降低,分析其原因主要有以下2点:通气速率增大,气体对铁炭的作用力也相应增大,使得铁炭分离,形成的原电池数量大量减少而影响处理效果;随着通气速率增大,溶液中的气泡数量会随之增加,大量的气泡聚集导致气泡的体积增大,比表面积减少,使传质系数减少而影响处理效果。因此,最终确定反应的最佳通气速率为0.4 m3·h?1


3) 铁炭比对处理效果的影响。控制天然气中H2S的初始含量为800 mg·m?3,在室温、反应时间为30 min、通气速率为0.4 m3·h?1和pH=7的条件下,研究了铁炭比(总质量不变)对H2S去除率的影响,实验结果如图5所示。由图5可见,随着铁炭比的增加,H2S剩余含量先减少后增加,H2S去除率先增大后降低,当铁炭比为3∶2时去除效果最好,H2S剩余含量达到最低值,为232.75 mg·m?3,H2S去除率达到70.91%。当铁炭比小于3∶2时,随着铁炭比的增加,反应体系中Fe的含量增加,使反应器中原电池的数量增加,有效地提高了H2S的去除效果,使得H2S去除率呈现逐渐升高的趋势;当铁炭比大于3∶2时,造成Fe大量剩余,当反应开始后,短时间内会形成过多的铁泥沉积在活性炭表面,使形成原电池数量减少,从而阻碍反应的进行[21],故导致H2S去除率呈现逐渐降低的趋势。因此,最终确定反应的最佳铁炭比为3∶2。


4) pH对处理效果的影响。控制天然气中H2S的初始含量为800 mg·m?3,在室温、反应时间为30 min、通气速率为0.4 m3·h?1和铁炭比为3∶2的条件下,研究pH对H2S去除率的影响,结果如图6所示。由图6可知,随着pH的增加,H2S剩余含量逐渐减少,H2S去除率逐渐升高;当pH为6时,H2S剩余含量为14.5 mg·m?3,去除率高达98.19%;而当pH为12时,H2S剩余含量为377.5 mg·m?3,去除率仅为52.81%,可见pH对H2S的去除效果有着重要的影响。这是因为当pH较低时,反应体系酸性越强,微电池的电位差越大,原电池的电动势越大,微电解反应较快,处理效果较好;随着pH的增加,微电池的电位差降低,反应变慢,导致处理效果下降[27]



1) Box-Behnken设计。从以上单因素实验结果可知,反应时间对H2S的去除效果有一定的影响,但当反应一段时间后,对H2S的去除效果的影响很小。因此,最终选择铁炭比、通气速率和pH 3个因素进行响应曲面分析,采用Design Expert软件中的Box-Behnken法进行设计,以铁炭比、通气速率和pH作为自变量,以H2S去除率作为因变量,进行3因素3水平的响应曲面分析,确定各个因素对H2S处理效果的影响。实验设计因素与水平如表1所示,响应曲面实验运行结果如表2所示。实验中H2S的初始含量为800 mg·m?3








2) ANOVA分析及二次回归拟合。根据Design Expert软件设计的实验模型进行ANOVA分析和模型的显著性分析,结果如表3所示。分析结果显示,在H2S去除率的模型中P=0.003 3,P<0.05,说明回归模型显著;失拟项不显著(P=0.676 9>0.05),这说明模型的预测值和实际值的误差较小,能够较好地反映响应值变化;在95%置信区间内,模型与实际值拟合较好。因此,可以将此模型用于内循环微电解处理天然气中H2S效果的预测。由图7可知,模型的实际值与预测值差别较小,R2为0.921 2,这说明模型可以较好地反映各个因素对H2S去除效果的影响。通过统计学分析,估计出二次回归方程中的回归系数(表3),由实验结果拟合得到天然气中H2S去除率的二次响应曲面方程(如式(5)所示)。






3)交互作用的响应曲面分析。通过软件对实验数据进行回归分析,得到回归方程的响应曲面和等高线图,如图8~图10所示。在pH=7的情况下,考察了铁炭比和通气速率对H2S去除率的交互作用影响(见图8)。由图8可知,无论是铁炭比和通气速率如何改变,H2S去除率均随着通气速率和铁炭比的增加而呈现先增大后减小的趋势,因此,铁炭比和通气速率2个因素间的交互作用不明显。






在通气速率为0.4 m3·h?1的情况下,考察了铁炭比和pH对H2S去除率的交互作用影响(见图9)。由图9可知,无论铁炭比如何改变,H2S去除率总是随着pH的增大而减小;无论pH如何变化,H2S去除率总是随着铁炭比的增大而呈现先增大后减小的趋势。因此,铁炭比和pH 2个因素间没有明显的交互作用。
在铁炭比为3∶2的情况下,考察了通气速率和pH对H2S去除率的交互作用影响(见图10)。由图10可知,无论通气速率如何改变,H2S去除率都随着pH的增大而减小;无论pH如何变化,H2S去除率总是随着通气速率的增大而呈现先增大后减小的趋势。因此,通气速率和pH 2个因素间没有明显的交互作用。
综合响应曲面图和ANOVA分析中各因素的F值(C(12.03)>B(11.05)>A(5.22))可知,影响天然气中H2S去除效果的因素依次为pH>通气速率>铁炭比。通过Design Expert软件优化获得的最佳反应条件:铁炭比为3∶2,通气速率为0.33 m3·h?1,pH为6.1。在最优的条件下,模型预测H2S去除率为92.66%,模型预测值的95%置信区间为80.17%~100%。

在上述最佳反应条件下进行实验,结果表明H2S去除率为84.6%,其落在模型预测值的95%置信区间(80.16%~100%)内。我国大部分气田的天然气中H2S含量小于800 mg·m?3,在最佳反应条件下,即使H2S的去除率取置信区间的下限80.16%,处理后H2S剩余含量小于158.72 mg·m?3,仍然可以达到《天然气》(GB 17820-2012)[28]中三类标准。通过验证实验证明,Design Expert响应曲面法具有较好的预测效果,可以利用响应曲面法对内循环微电解处理天然气中H2S的去除率进行预测。

1)采用内循环微电解对天然气中的H2S进行处理,单因素实验结果表明,采用内循环微电解技术处理天然气中H2S具有可行性。
2)通过Design Expert软件中Numercal优化功能,得到H2S去除效果最优时的反应条件:通气速率为0.33 m3·h?1、铁炭比为3∶2、pH为6.1。在此条件下,H2S的平均去除率为84.6%,处理后H2S剩余含量可从800 mg·m?3降至158.72 mg·m?3,可以达到《天然气》(GB 17820-2012)中三类标准。因此,内循环微电解技术可以有效地去除天然气中的H2S。

参考文献 (28)
相关话题/天然气 实验 技术 优化 设计