2.中国科学院大学,北京 100049
1.Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
为探究农村小管径重力流灰水管道系统生物膜的细菌群落结构特征,建立了一套模拟真实农村环境条件下水量变化且具有3组坡度参数(5‰,10‰,15‰)的小管径灰水管道实验设备,利用Illumina HiSeq高通量测序技术,分析了连续运行60 d后的管道生物膜的细菌群落特征。结果表明:
,坡度变化会显著影响生物膜细菌群落组成;小管径重力流灰水管道生物膜中存在一定丰度的反硝化细菌和硝化细菌,具有生物脱氮功能。通过PICRUSt功能预测发现,高坡度(15‰)的灰水管道具有更高的硝化和反硝化基因丰度。进一步分析可知,小管径灰水管道采用高敷设坡度的设计方案可能具有更强的生物脱氮能力。
To explore the characteristics of bacterial communities in the biofilms of rural gray water small diameter gravity sewer (SDGS) systems, a gray water SDGS equipment was set up which can simulate the variations of gray water flow rate in rural area and slope gradients (5‰, 10‰, 15‰). Sewer biofilms sampled after 60 d operation were analyzed by Illumina HiSeq high-throughput sequencing. Results indicated that
were the predominant genus. Slope gradients had great influences on bacterial communities in sewer biofilms. Denitrifying bacteria and nitrite-oxidizing bacteria with certain abundance were identified in gray water SDGS biofilms, which had the function of biological nitrogen removal. The abundance of nitrification and denitrification genes predicted by the method of PICRUSt was higher in gray water SDGS biofilms with higher slope gradient (15‰). The gray water SDGS with high slope gradients could have stronger biological nitrogen removal.
.
Schematic diagram of simulated small diameter gravity sewers
Variation of relative depth and flow velocity with time in sewers
SEM images of gray water SDGS biofilms
Shannon diagram of OTUs
Relative abundance of bacteria at phylum level
Heat map of relative abundance of bacteria at genus level
细菌LEfSe分析图 (LDA > 3.5)
LEfSe diagram of bacteria (LDA > 3.5)
Predicted abundance of nitrification genes
Predicted abundance of denitrification genes
Relative abundance of functional bacteria in gray water sewer biofilms at genus level
[1] | WANG L K, TAY J H, TAY S T L, et al. Environmental Bioengineering [M]. Totowa, NJ: Humana Press, 2010. |
[2] | 郝晓地, 宋虹苇. 生态卫生: 可持续、分散式污水处理新概念[J]. 给水排水, 2005, 31(6): 42-45. doi: 10.3969/j.issn.1002-8471.2005.06.013 |
[3] | National Academies of Sciences, Engineering, Medicine. Using Graywater and Stormwater to Enhance Local Water Supplies: An Assessment of Risks, Costs, and Benefits[M]. Washington, DC: The National Academies Press, 2016. |
[4] | 范彬, 胡明, 顾俊, 等. 不同农村污水收集处理方式的经济性比较[J]. 中国给水排水, 2015, 31(14): 20-25. |
[5] | GIKAS P, RANIERI E, SOUGIOULTZIS D, et al. Alternative collection systems for decentralized wastewater management: An overview and case study of the vacuum collection system in Eretria town, Greece[J]. Water Practice and Technology, 2017, 12(3): 604-618. doi: 10.2166/wpt.2017.050 |
[6] | U. S. Environmental Protection Agency. Decentralized systems technology fact sheet small diameter gravity sewers[R]. Washington, DC: Office of Water, 2000. |
[7] | LITTLE C. A comparison of sewer reticulation system design standards gravity, vacuum and small bore sewers[J]. Water SA, 2007, 30(5): 137-144. |
[8] | JIN P K, WANG B, JIAO D, et al. Characterization of microflora and transformation of organic matters in urban sewer system[J]. Water Research, 2015, 84: 112-119. doi: 10.1016/j.watres.2015.07.008 |
[9] | 金鹏康, 王斌. 城市污水管网对水质的生化改善特性[J]. 环境工程学报, 2016, 10(7): 3401-3408. doi: 10.12030/j.cjee.201502075 |
[10] | HE Q, YIN F X, LI H, et al. Suitable flow pattern increases the removal efficiency of nitrogen in gravity sewers: A suitable anoxic and aerobic environment in biofilms[J]. Environmental Science and Pollution Research, 2018, 25(16): 1-11. |
[11] | 张冰, 杨海真. 农村混合生活污水排放特征及其处理工艺研究[J]. 四川环境, 2012, 31(4): 65-70. doi: 10.3969/j.issn.1001-3644.2012.04.013 |
[12] | AESOY A, STORFJELL M, MELLGREN L, et al. A comparison of biofilm growth and water quality changes in sewers with anoxic and anaerobic (septic) conditions[J]. Water Science and Technology, 1997, 36(1): 303-310. doi: 10.2166/wst.1997.0068 |
[13] | AI H N, XU J W, HUANG W, et al. Mechanism and kinetics of biofilm growth process influenced by shear stress in sewers[J]. Water Science and Technology, 2016, 73(7): 1572-1582. doi: 10.2166/wst.2015.633 |
[14] | LANGILLE M G I, JESSE Z J, GREGORY C, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nature Biotechnology, 2013, 31(9): 814-821. doi: 10.1038/nbt.2676 |
[15] | BUSSE H J. Review of the taxonomy of the genus Arthrobacter, emendation of the genus Arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. nov., Paeniglutamicibacter gen. nov., Pseudoglutamicibacter gen. nov., Paenarthrobacter gen. nov. and Pseudarthrobacter gen. nov., and emended description of Arthrobacter roseus[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(1): 9-37. doi: 10.1099/ijsem.0.000702 |
[16] | CASIDA L E J. Ensifer adhaerens gen. nov., sp. nov.: A bacterial predator of bacteria in soil[J]. International Journal of Systematic Bacteriology, 1982, 32(3): 339-345. doi: 10.1099/00207713-32-3-339 |
[17] | KEUN S B, NA C H, SEONG C P, et al. Sphingopyxis rigui sp. nov. and Sphingopyxis wooponensis sp. nov., isolated from wetland freshwater, and emended description of the genus Sphingopyxis[J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(4): 1297-1303. |
[18] | DONG Q, SHI H C, LIU Y C. Microbial character related sulfur cycle under dynamic environmental factors based on the microbial population analysis in sewerage system[J]. Frontiers in Microbiology, 2017, 8: 1-11. |
[19] | LIU Y C, ZHOU X H, SHI H C. Sulfur cycle by in situ analysis in the sediment biofilm of a sewer system[J]. Journal of Environmental Engineering, 2016, 142(9): C4015011. doi: 10.1061/(ASCE)EE.1943-7870.0000991 |
[20] | JIN P K, SHI X, SUN G X, et al. Co-variation between distribution of microbial communities and biological metabolization of organics in urban sewer systems[J]. Environmental Science and Technology, 2018, 52(3): 1270-1279. doi: 10.1021/acs.est.7b05121 |
[21] | 王薇, 蔡祖聪, 钟文辉, 等. 好氧反硝化菌的研究进展[J]. 应用生态学报, 2007, 18(11): 2618-2625. |
[22] | 曾薇, 张丽敏, 王安其, 等. 污水处理系统中硝化菌的菌群结构和动态变化[J]. 中国环境科学, 2015, 35(11): 3257-3265. doi: 10.3969/j.issn.1000-6923.2015.11.008 |
[23] | BARTON L, TOME I T F. Characteristics and Activities of Sulfate-Reducing Bacteria[M]. Boston, MA: Springer Science Business Media, 1995. |
[24] | MATěJ? V, ?I?INSK S, KREJ? J, et al. Biological water denitrification: A review[J]. Enzyme and Microbial Technology, 1992, 14(3): 170-183. doi: 10.1016/0141-0229(92)90062-S |