3.中国矿业大学环境与测绘学院,徐州 221116
1.School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China
2.School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
3.School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
),该优势菌最佳生长条件为:降解时间48 h,菌液接种量10%,pH=7,温度25 ℃。以间二氯苯为模拟有机废气,采用生物滴滤器接种土壤短芽孢杆菌的方法对其进行生物处理。结果表明,在空床停留时间为90 s、进气浓度为1 000 mg·m
条件下,间二氯苯的去除率可以维持在85%以上。生物滴滤器稳定运行后,菌体表面官能团发生改变,通过傅里叶红外光谱和X射线光电子能谱分析发现,菌株通过逐步加氧羧化后开环降解间二氯苯;对菌株再进行16S rRNA基因序列的同源性分析发现,生物膜中
占比达69.39%,并可以良好生长。研究可为间二氯苯的工业化处理提供参考。
. The experimental results showed that the optimal growth conditions of the dominant bacteria were following: degradation time of 48 h, inoculum percent of 10%, pH=7, 25 ℃. Then
-dichlorobenzene was used to simulate organic waste gas, which was treated by a biotrickling filter inoculated with
. The results showed when the empty bed residence time was 90 s, the intake gas concentration was 1 000 mg·m
-dichlorobenzene could be maintained above 85%. After the biotrickling filter was stably operated, the functional groups on the surface of the cells were changed. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy indicated that the degradation of
-dichlorobenzene was through the oxygenation-carboxylation-ring-opening pathway. 16S rRNA gene cloning and phylogenetic analysis performed on the strain showed that the proportion of
was up to 69.39%, and it presented a good growth in the biotrickling filter. This study can provide reference for the industrial scale treatment of dichlorobenzene.
.
TEM images and phylogenetic trees of strain DH-1
Schematic diagram of biotrickling filter
-dichlorobenzene degradation
-dichlorobenzene by the BTF during the start-up phase
Removal capacity of BTF at different empty bed residence times
Removal capacity of BTF at different intake concentrations
Removal capacity of BTF at different intake load rates
FTIR spectrum of bacteria in BTF
XPS spectrum of bacteria in BTF
Abundance pie chart of single sample at genus level
[1] | BALASUBRAMANIAN P, PHILIP L, BHALLAMUDI S M. Biotrickling filtration of complex pharmaceutical VOC emissions along with chloroform[J]. Bioresource Technology, 2012, 114(3): 149-159. |
[2] | WANG Q, LI S, DONG M, et al. VOCs emission characteristics and priority control analysis based on VOCs emission inventories and ozone formation potentials in Zhoushan[J]. Atmospheric Environmental, 2018, 182: 234-241. doi: 10.1016/j.atmosenv.2018.03.034 |
[3] | HAN D, GAO S, FU Q, et al. Do volatile organic compounds (VOCs) emitted from petrochemical industries affect regional PM2.5?[J]. Atmospheric Research, 2018, 209: 123-130. doi: 10.1016/j.atmosres.2018.04.002 |
[4] | HUNTER P, OYAMA S T. Control of Volatile Organic Compound Emissions: Conventional and Emerging[M]. New York: John Wiley & Sons, Interscience., 2000. |
[5] | WU H, YAN H, QUAN Y, et al. Recent progress and perspectives in biotrickling filters for VOCs and odorous gases treatment[J]. Journal of Environmental Management, 2018, 222: 409-419. |
[6] | ERQI N, ZHENG G D, GAO D, et al. Emission characteristics of VOCs and potential ozone formation from a full-scale sewage sludge composting plant[J]. Science of the Total Environment, 2019, 659: 664-672. doi: 10.1016/j.scitotenv.2018.12.404 |
[7] | 王铁宇, 李奇锋, 吕永龙. 我国VOCs的排放特征及控制对策研究[J]. 环境科学, 2013, 12(12): 4756-4763. |
[8] | QIAO W, LUO F, LOMHEIM L, et al. Natural attenuation and anaerobic benzene detoxification processes at a chlorobenzene-contaminated industrial site inferred from field investigations and microcosm studies[J]. Environmental Science & Technology, 2017, 52(1): 22-31. |
[9] | WAN X, GUO C, LIU Y, et al. Kinetic research on dechlorinating dichlorobenzene in aqueous system by nano-scale nickel/iron loaded with CMC/NFC hydrogel[J]. Chemosphere, 2017, 194: 297-305. |
[10] | 刘佳. 生物表面活性剂在疏水性VOCs生物降解中的应用潜力[J]. 中国科技论文, 2014, 9(3): 355-359. doi: 10.3969/j.issn.2095-2783.2014.03.021 |
[11] | ZHOU Q, ZHANG L, CHEN J, et al. Performance and microbial analysis of two different inocula for the removal of chlorobenzene in biotrickling filters[J]. Chemical Engineering Journal, 2016, 284: 174-181. doi: 10.1016/j.cej.2015.08.130 |
[12] | KENNES C, VEIGA M C. Air Pollution Prevention and Control: Bireactors and Bioenergy[M]. Weinheim: Wiley-Blackwell, 2013. |
[13] | DEVINNY J S, DESHUESSES M A, WEBSTER T S. Biofiltration for Air Pollution Control[M]. 2nd ed. Boca Raton: CRC Press, 2008. |
[14] | CHEN H, LIU S. Cooperative adsorption based kinetics for dichlorobenzene dechlorination over Pd/Fe bimetal[J]. Chemical Engineering Science, 2015, 138: 510-515. doi: 10.1016/j.ces.2015.08.033 |
[15] | 国家发展和改革委员会高技术产业司, 中国生物工程学会. 中国生物产业发展报告[M]. 北京: 化学工业出版社, 2010. |
[16] | VAN GROENESTIJN J W, KRAAKMAN N J R. Recent developments in biological waste gas purification in Europe[J]. Chemical Engineering Journal, 2005, 113: 85-91. doi: 10.1016/j.cej.2005.03.007 |
[17] | ALEMZADEH I, VOSSOUGHI M. Biodegradation of toluene by an attached biofilm in a rotating biological contactor[J]. Process Biochemistry, 2001, 36(8): 707-711. |
[18] | RAMTEKE L P, GOGATE P R. Treatment of toluene, benzene, naphthalene and xylene (BTNXs) containing wastewater using improved biological oxidation with pretreatment using Fenton/ultrasound based processes[J]. Journal of Industrial and Engineering Chemistry, 2015, 28: 247-260. doi: 10.1016/j.jiec.2015.02.022 |
[19] | HAZRATI H, SHAYEGAN J. Influence of suspended carrier on membrane fouling and biological removal of styrene and ethylbenzene in MBR[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 64: 59-68. doi: 10.1016/j.jtice.2015.12.002 |
[20] | KHODAEI K, NASSERY H R, ASADI M M, et al. BTEX biodegradation in contaminated groundwater using a novel strain (Pseudomonas sp. BTEX-30)[J]. International Biodeterioration & Biodegradation, 2017, 116: 234-242. |
[21] | SAN-VALERO P, DORADO A D, VICENTE M S, et al. Biotrickling filter modeling for styrene abatement. Part 1: Model development, calibration and validation on an industrial scale[J]. Chemosphere, 2018, 191: 1066-1074. doi: 10.1016/j.chemosphere.2017.10.069 |
[22] | MUDLIAR S, GIRI B, PADOLEY K, et al. Bioreactors for treatment of VOCs and odours: A review[J]. Journal of Environmental Management, 2010, 91(5): 1039-1054. doi: 10.1016/j.jenvman.2010.01.006 |
[23] | NORBERTUS J R, KRAAKM A N. Review of mass transfer aspects for biological gas treatment[J]. Applied Microbiology & Biotechnology, 2011, 91(4): 873-886. |
[24] | CHENG Z, LU L, KENNES C, et al. Treatment of gaseous toluene in three biofilters inoculated with fungi/bacteria: Microbial analysis, performance and starvation response[J]. Journal of Hazardous Materials, 2016, 303: 83-93. doi: 10.1016/j.jhazmat.2015.10.017 |
[25] | ESTRADA J M, HERNáNDEZ S, MU?OZ R, et al. A comparative study of fungal and bacterial biofiltration treating a VOC mixture[J]. Journal of Hazardous Materials, 2013, 250-251: 190-197. |
[26] | RENE E R, MOHAMMAD B T, VEIGA M C, et al. Biodegradation of BTEX in a fungal biofilter: Influence of operational parameters, effect of shock-loads and substrate stratification[J]. Bioresource Technology, 2012, 116: 204-213. |
[27] | LIU X, ZHANG Z, MIN L I, et al. Purification of chrolobenzene contained waste gas in biotrickling filter enhanced by surfactant solutions[J]. Environmental Science & Technology, 2014(4). |
[28] | 东秀珠. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. |
[29] | BUCHANAN R E, GIBBONS N E. Bergey’s Manual of Determinative Bacteriology[M]. Baltimore: Williams & Wilikins Company, 1974. |
[30] | 国家环境保护局. 水质氯苯类化合物的测定: HJ 621-2011 [S]. 北京: 中国环境科学出版社, 2011. |
[31] | 梅瑜, 成卓韦, 王家德, 等. 利用新型组合填料的生物滴滤塔净化混合废气研究[J]. 环境科学, 2015, 36(12): 4389-4395. |
[32] | 何硕, 周楠楠, 黄琼, 等. 生物滴滤塔处理模拟甲硫醚废气[J]. 化工环保, 2017, 37(2): 218-222. doi: 10.3969/j.issn.1006-1878.2017.02.016 |
[33] | 耿凤华, 张书武, 宫磊. 生物滴滤塔处理模拟印刷有机废气[J]. 化工环保, 2018, 38(2): 217-221. doi: 10.3969/j.issn.1006-1878.2018.02.017 |
[34] | WU X, LI W, DONG O, et al. Enhanced adsorption of Zn2+ by salinity-aided aerobic granular sludge: Performance and binding mechanism[J]. Journal of Environmental Management, 2019, 242: 266-271. |
[35] | 周煜, 陈梅玲, 姜黎, 等. 16S rRNA序列分析法在大气微生物检测中的应用[J]. 生物技术通讯, 2000, 11(2): 111-114. doi: 10.3969/j.issn.1009-0002.2000.02.008 |