删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

烟气脱硫石膏和园林废弃物堆肥混合施用对滨海盐渍土壤的改良

本站小编 Free考研考试/2021-12-31

贺坤1,,
童莉1,
盛钗1,
周纯亮1,
陈小华2,
孙海燕1,
张志国1,,
1.上海应用技术大学生态技术与工程学院,上海 201418
2.上海市环境科学研究院,上海 200233
作者简介: 贺坤(1982—),男,博士,副教授。研究方向:城市生态景观修复。E-mail:hekun@sit.edu.cn.
通讯作者: 张志国,zgzhang@sit.edu.cn

中图分类号: X712


Coastal saline soil remediation by mixed-use of flue gas desulfurization gypsum and green wastes compost

HE Kun1,,
TONG Li1,
SHENG Chai1,
ZHOU Chunliang1,
CHEN Xiaohua2,
SUN Haiyan1,
ZHANG Zhiguo1,,
1.School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
2.Shanghai Academy of Environmental Sciences, Shanghai 200233, China
Corresponding author: ZHANG Zhiguo,zgzhang@sit.edu.cn

CLC number: X712

-->

摘要
HTML全文
(6)(3)
参考文献(30)
相关文章
施引文献
资源附件(0)
访问统计

摘要:为克服烟气脱硫石膏改良盐碱地存在的土壤盐分升高、营养物质降低等不足,通过对不同重量配比的园林废弃物堆肥与适量烟气脱硫石膏混合施用,且开展了其对上海南汇滨海盐渍土的改良效应研究。结果表明:2种改良剂混合施用能显著降低滨海盐渍土pH和全盐含量,增加土壤营养物质含量和植物生物量,并提高植物对营养物质的吸收能力;与对照相比,当烟气脱硫石膏施用量为25 g·kg?1时,土壤pH降低了10.9%,EC升高了8.4%,有效磷、有效氮和速效钾含量分别降低了30.1%、40.5%和36.1%,黑麦草发芽率下降了8.0%,植株内全氮、全钾含量均有所升高,但全磷含量减少了25.4%;混合施加不同重量配比的园林废弃物堆肥后,土壤pH降幅为6.8%~13.8%,EC降幅为4.2%~11.6%;土壤有效磷、有效氮和速效钾含量增幅分别为96.0%~182.7%、40.0%~186.7%和71.7%~157.5%;黑麦草发芽率和生物量逐渐增加,在园林废弃物堆肥施用量为40%时,与对照处理相比,此时植物发芽率达到90.0%,总湿重、地上干重、株高和根长等分别增加了154.1%、100.0%、89.2%和103.6%,植株体内氮和钾含量分别增加了139.9%和40.8%,磷的含量则接近对照处理。通过分析可知,烟气脱硫石膏和园林废弃物混合施用可较好地改良滨海盐渍土壤,并为城市固废的适合处置方式和综合利用途径提供了参考。
关键词: 烟气脱硫石膏/
园林废弃物堆肥/
混合施用/
盐渍土/
土壤改良/
营养物质

Abstract:To overcome the shortcomings of high salinity and nutrients deficiency for flue gas desulfurization gypsum (FGD-gypsum) in improving saline-alkali soil, the mixture of flue gas desulfurization gypsum (FGD-gypsum) and green wastes compost (GWC) with different mass ratios was used to conduct the experiments of saline alkali soil recovery in Nanhui District, Shanghai. The results showed that their mixed-use could significantly reduce the pH and total salt content of saline soil, raise the nutrients content, the biomass of plants and plant absorbing ability for nutrients. Compared with the control group, when the dosage of FGD-gypsum was 25 g·kg?1, pH decreased by 10.9%, EC increased by 8.4%, available phosphorus, hydrolytic nitrogen and potassium contents decreased by 8.4%, 30.1%, 40.5% and 36.1%, respectively, the ryegrass germination decreased by 8.0%, the contents of total nitrogen and potassium increased, and total phosphorus in plant decreased by 25.4%. When different mass ratios of GWC was mixed with FGD-gypsum for soil recovery, soil pH and EC value decreased by 6.8%~13.8% and by 4.2%~11.6%, respectively, while the contents of soil available phosphorus, hydrolytic nitrogen and potassium contents increased by 96.0%~182.7%, 40.0%~186.7% and 71.7%~157.5%, respectively. The germination rate and biomass of ryegrass increased gradually. At GWC mass ratio of 40%, compared with the control group, the germination rate reached 90.0%, the total wet weight, above ground dry weight, plant height and root length increased by 154.1%, 100.0%, 89.2% and 103.6%, respectively. The contents of nitrogen and potassium in plant increased by 139.9% and 40.8%, respectively, and phosphorus content was close to that in the control group. These results indicated that the mixed-use of FGD-gypsum and GWC had a good performance on the saline alkali soil recovery, and provided a reference for the feasible disposal and comprehensive approaches of municipal solid waste.
Key words:flue gas desulfurization gypsum (FGD-gypsum)/
green wastes compost (GWC)/
mixed application/
saline soil/
soil improvement/
nutrients.

加载中

图1不同改良处理中土壤pH的变化
Figure1.Changes of soil pH under different soil amendments


下载: 全尺寸图片幻灯片


图2不同改良处理中土壤EC的变化
Figure2.Changes of soil EC under different soil amendments


下载: 全尺寸图片幻灯片


图3不同改良处理中土壤有机质含量的变化
Figure3.Changes of soil SOM under different soil amendments


下载: 全尺寸图片幻灯片


图4不同改良处理中土壤营养物质含量的变化
Figure4.Changes of soil nutrient elements under different soil amendments


下载: 全尺寸图片幻灯片


图5不同改良处理中黑麦草发芽率的变化
Figure5.Changes of germination rate of Ryegrass under different soil amendments


下载: 全尺寸图片幻灯片


图6不同改良处理中黑麦草叶片数量的变化
Figure6.Changes of leaf number of ryegrass under different soil amendments


下载: 全尺寸图片幻灯片

表1实验材料主要理化性质
Table1.Physical and chemical properties of test materials
实验材料pHEC/(mS·cm?1)有机质/%全氮/(g·kg?1)全磷/(g·kg?1)全钾/(g·kg?1)
土壤8.71.302.250.41.0512.7
堆肥7.30.37112.01.362.3110.44
烟气脱硫石膏7.2<0.001<0.001<0.1
  注:实验植物为黑麦草(Lolium perenne L.),种植前于实验室恒温箱内进行发芽率实验,发芽率约为90.0%。

实验材料pHEC/(mS·cm?1)有机质/%全氮/(g·kg?1)全磷/(g·kg?1)全钾/(g·kg?1)
土壤8.71.302.250.41.0512.7
堆肥7.30.37112.01.362.3110.44
烟气脱硫石膏7.2<0.001<0.001<0.1
  注:实验植物为黑麦草(Lolium perenne L.),种植前于实验室恒温箱内进行发芽率实验,发芽率约为90.0%。

下载: 导出CSV
表2不同处理中黑麦草生长特征的变化
Table2.Changes of growth characteristics of ryegrass under different soil amendments
处理总湿质量/g地上干质量/g地下干质量/g株高/cm根长/cm
T10.146±0.012a0.021±0.001a0.009±0.001a13.0±1.20a13.8±2.25a
T20.191±0.052b0.024±0.004a0.010±0.002a14.8±0.52a16.4±2.30a
T30.201±0.004b0.029±0.001b0.011±0.001a16.8±0.36b19.6±1.52b
T40.281±0.009c0.030±0.003b0.013±0.001b19.6±0.52c22.0±3.01b
T50.303±0.041c0.036±0.002c0.014±0.002b21.8±0.07c24.4±2.10c
T60.371±0.020c0.042±0.002d0.013±0.001b24.6±0.21d28.1±2.10d

处理总湿质量/g地上干质量/g地下干质量/g株高/cm根长/cm
T10.146±0.012a0.021±0.001a0.009±0.001a13.0±1.20a13.8±2.25a
T20.191±0.052b0.024±0.004a0.010±0.002a14.8±0.52a16.4±2.30a
T30.201±0.004b0.029±0.001b0.011±0.001a16.8±0.36b19.6±1.52b
T40.281±0.009c0.030±0.003b0.013±0.001b19.6±0.52c22.0±3.01b
T50.303±0.041c0.036±0.002c0.014±0.002b21.8±0.07c24.4±2.10c
T60.371±0.020c0.042±0.002d0.013±0.001b24.6±0.21d28.1±2.10d

下载: 导出CSV
表3不同处理中黑麦草植株内营养物质的变化
Table3.Changes of nutrients in ryegrass under different soil amendments mg·kg?1
处理全氮全磷全钾
T14.268±0.232a0.206±0.015a5.200±0.192a
T25.584±0.158b0.154±0.015b5.641±0.067b
T36.957±0.176c0.159±0.020b6.000±0.307c
T48.662±0.337d0.166±0.013b6.041±0.232c
T59.333±0.197d0.191±0.004a6.803±0.081d
T610.238±0.348e0.207±0.017a7.324±1.263d

处理全氮全磷全钾
T14.268±0.232a0.206±0.015a5.200±0.192a
T25.584±0.158b0.154±0.015b5.641±0.067b
T36.957±0.176c0.159±0.020b6.000±0.307c
T48.662±0.337d0.166±0.013b6.041±0.232c
T59.333±0.197d0.191±0.004a6.803±0.081d
T610.238±0.348e0.207±0.017a7.324±1.263d

下载: 导出CSV

[1] 李小平, 刘晓臣, 毛玉梅, 等. 烟气脱硫石膏对围垦滩涂土壤的脱盐作用[J]. 环境工程技术学报, 2014, 4(6): 502-507. doi: 10.3969/j.issn.1674-991X.2014.06.079
[2] AIKEN G E, POTE D H, et al. Amendment effects on soil test phosphorus[J]. Journal of Environmental Quality, 2005, 34(5): 1682-1686. doi: 10.2134/jeq2004.0373
[3] CHEN L M, KOST D, DICK W A. Flue gas desulfurization products as sulfur sources for corn[J]. Soil Science Society of America Journal, 2008, 72(5): 1464-1470. doi: 10.2136/sssaj2007.0221
[4] 肖国举, 罗成科, 张峰举, 等. 燃煤电厂脱硫石膏改良碱化土壤的施用量[J]. 环境科学研究, 2010, 23(6): 762-767.
[5] CHEN L M, DICK W A. Gypsum as an agricultural amendment: general use guidelines[R]. The Ohio State University Extension Service, Columbus, 2011: 1-5.
[6] FAVARETTO N, NORTON L D, JOHNSTON C T, et al. Nitrogen and phosphorus leaching as affected by gypsum amendment and exchangeable calcium and magnesium[J]. Soil Science Society of America Journal, 2012, 76(2): 575-585. doi: 10.2136/sssaj2011.0223
[7] 程镜润, 陈小华, 刘振鸿, 等. 脱硫石膏改良滨海土的脱盐过程与效果试验研究[J]. 中国环境科学, 2014, 34(6): 1505-1513.
[8] MAO Y M, LI X P, DICK W A, et al. Remediation of saline-sodic soil with flue gas desulfurization gypsum in a reclaimed tidal flat of southeast China[J]. Journal of Environmental Sciences, 2016, 45(7): 224-230.
[9] 贺坤, 李小平, 徐晨, 等. 烟气脱硫石膏对滨海盐渍土的改良效果[J]. 环境科学研究, 2018, 31(3): 547-554.
[10] 吕子文, 方海兰, 黄彩娣. 美国园林植物废弃物的处置及对我国的启示[J]. 中国园林, 2007, 23(8): 90-92. doi: 10.3969/j.issn.1000-6664.2007.08.018
[11] 崔萌, 李素艳, 杨田, 等. 园林绿化废弃物堆肥对公园绿地土壤的改良研究[J]. 中国农学通报, 2016, 32(17): 106-110. doi: 10.11924/j.issn.1000-6850.casb15120064
[12] 张强, 孙向阳, 任忠秀, 等. 园林绿化废弃物堆肥用作花卉栽培基质的效果评价[J]. 中南林业科技大学学报: 自然科学版, 2011, 31(9): 7-13.
[13] 顾兵, 吕子文, 方海兰, 等. 绿化植物废弃物堆肥对城市绿地土壤的改良效果[J]. 土壤, 2009, 41(6): 940-946. doi: 10.3321/j.issn:0253-9829.2009.06.016
[14] 杨军, 孙兆军, 刘吉利, 等. 脱硫石膏糠醛渣对新垦龟裂碱土的改良洗盐效果[J]. 农业工程学报, 2015, 31(17): 128-135. doi: 10.11975/j.issn.1002-6819.2015.17.017
[15] 国家林业局. 中华人民共和国林业行业标准: 森林土壤分析方法[M]. 北京: 中国标准出版社, 1999.
[16] FAVARETTO N, NORTON L D, JOEM B C, et al. Gypsum amendment and exchangeable calcium and magnesium affecting phosphorus and nitrogen in runoff[J]. Soil Science Society of America Journal, 2006, 70(5): 1788-1796. doi: 10.2136/sssaj2005.0228
[17] 温国昌, 徐彦虎, 林启美, 等. 草木樨与脱硫石膏对内蒙古盐渍化土壤的改良培肥作用与效果[J]. 干旱地区农业研究, 2016, 34(1): 81-86. doi: 10.7606/j.issn.1000-7601.2016.01.13
[18] 贺坤, 李小平, 周纯亮, 等. 烟气脱硫石膏对滨海农耕土壤磷素形态组成的影响[J]. 生态学报, 2017, 37(9): 2935-2942.
[19] 陈浩天, 张地方, 张宝莉, 等. 园林废弃物不同处理方式的环境影响及其产物还田效应[J]. 农业工程学报, 2018, 34(21): 239-244. doi: 10.11975/j.issn.1002-6819.2018.21.030
[20] 李春越, 王益, PHILIP B, 等. pH对土壤微生物C/P比的影响[J]. 中国农业科学, 2013, 46(13): 2709-2716. doi: 10.3864/j.issn.0578-1752.2013.13.009
[21] 郭晓博. 脱硫石膏对堆肥中氮素转化和腐殖化特征影响的研究[D]. 南宁: 广西大学, 2016.
[22] CLARK R B, RITCHEY K D, BALIGAR V C. Benefits and constraints for use of FGD products on agricultural land[J]. Fuel, 2001, 80(6): 821-828. doi: 10.1016/S0016-2361(00)00162-9
[23] 毛玉梅, 李小平. 烟气脱硫石膏对滨海滩涂盐碱地的改良效果研究[J]. 中国环境科学, 2016, 36(1): 225-231. doi: 10.3969/j.issn.1000-6923.2016.01.038
[24] 邹璐, 范秀华, 孙兆军, 等. 盐碱地施用脱硫石膏对土壤养分及油葵光合特性的影响[J]. 应用与环境生物学报, 2012, 18(4): 575-581.
[25] 徐秋桐, 孔樟良, 章明奎. 不同有机废弃物改良新复垦耕地的综合效果评价[J]. 应用生态学报, 2016, 27(2): 567-576.
[26] 李万才, 张丽蓉, 马海林. 城市固体废弃物堆肥与化肥对不同土壤植物生长的影响研究[J]. 中国生态农业学报, 2006, 14(2): 107-110.
[27] 龚小强. 园林绿化废弃物堆肥产品改良及用作花卉栽培代用基质研究[D]. 北京: 北京林业大学, 2013.
[28] 包立, 刘惠见, 邓洪, 等. 玉米秸秆生物炭对滇池流域大棚土壤磷素利用和小白菜生长的影响[J]. 土壤学报, 2018, 55(4): 815-824. doi: 10.11766/trxb201709210394
[29] TISDALE S L, NELSON W L, BEATON J D 著. 土壤肥力与肥料[M]// 金继运, 刘荣乐, 译. 北京: 中国农业科技出版社, 1998: 163-211.
[30] 刘雅辉, 王秀萍, 李强, 等. 淤泥质滨海重盐土低成本快速脱盐技术研究[J]. 水土保持研究, 2015, 22(1): 168-171.



加载中


Turn off MathJax -->
WeChat 点击查看大图



图( 6)表( 3)
计量

文章访问数:521
HTML全文浏览数:521
PDF下载数:37
施引文献:0
出版历程

收稿日期:2019-04-26
录用日期:2019-10-14
网络出版日期:2020-03-02
-->刊出日期:2020-02-01




-->








烟气脱硫石膏和园林废弃物堆肥混合施用对滨海盐渍土壤的改良

贺坤1,,
童莉1,
盛钗1,
周纯亮1,
陈小华2,
孙海燕1,
张志国1,,
通讯作者: 张志国,zgzhang@sit.edu.cn
作者简介: 贺坤(1982—),男,博士,副教授。研究方向:城市生态景观修复。E-mail:hekun@sit.edu.cn 1.上海应用技术大学生态技术与工程学院,上海 201418
2.上海市环境科学研究院,上海 200233
收稿日期: 2019-04-26
录用日期: 2019-10-14
网络出版日期: 2020-03-02
关键词: 烟气脱硫石膏/
园林废弃物堆肥/
混合施用/
盐渍土/
土壤改良/
营养物质
摘要:为克服烟气脱硫石膏改良盐碱地存在的土壤盐分升高、营养物质降低等不足,通过对不同重量配比的园林废弃物堆肥与适量烟气脱硫石膏混合施用,且开展了其对上海南汇滨海盐渍土的改良效应研究。结果表明:2种改良剂混合施用能显著降低滨海盐渍土pH和全盐含量,增加土壤营养物质含量和植物生物量,并提高植物对营养物质的吸收能力;与对照相比,当烟气脱硫石膏施用量为25 g·kg?1时,土壤pH降低了10.9%,EC升高了8.4%,有效磷、有效氮和速效钾含量分别降低了30.1%、40.5%和36.1%,黑麦草发芽率下降了8.0%,植株内全氮、全钾含量均有所升高,但全磷含量减少了25.4%;混合施加不同重量配比的园林废弃物堆肥后,土壤pH降幅为6.8%~13.8%,EC降幅为4.2%~11.6%;土壤有效磷、有效氮和速效钾含量增幅分别为96.0%~182.7%、40.0%~186.7%和71.7%~157.5%;黑麦草发芽率和生物量逐渐增加,在园林废弃物堆肥施用量为40%时,与对照处理相比,此时植物发芽率达到90.0%,总湿重、地上干重、株高和根长等分别增加了154.1%、100.0%、89.2%和103.6%,植株体内氮和钾含量分别增加了139.9%和40.8%,磷的含量则接近对照处理。通过分析可知,烟气脱硫石膏和园林废弃物混合施用可较好地改良滨海盐渍土壤,并为城市固废的适合处置方式和综合利用途径提供了参考。

English Abstract






--> --> --> 滨海土壤盐渍化严重,仅靠降雨淋洗和植物演替进行土壤改良需数10年、甚至更长时间,必须通过技术措施进行改良才能用于绿林建设[1]。近年来,烟气脱硫石膏对盐渍土壤的改良和修复效应得到较好地验证,其被认为是一项成本低、修复速率快的滨海盐渍土壤改良剂[2-4]。烟气脱硫石膏可以有效降低盐渍土壤pH和碱化度[5-7],但也存在一些不足。程镜润等[7]研究发现,烟气脱硫石膏在显著降低pH和碱化度的同时,也会增加土壤含盐量,并降低了土壤有效磷含量;MAO等[8]研究发现烟气脱硫石膏会导致土壤全盐量增加,并降低了土壤有机质和速效磷,影响了黑麦草的发芽率;贺坤等[9]研究发现,烟气脱硫石膏改良滨海盐渍土会使土壤EC有明显增加,土壤速效磷、速效钾含量降低。城市园林废弃物通过堆肥处理和微生物分解会转化形成腐殖质,可增加土壤营养物质含量、促进养分的转化,提高营养物质的有效性[10-11]。张强等[12]和顾兵等[13]研究表明,园林废弃物堆肥可以改善植物生长状况和基质通气性、保水性和养分供应能力,提高土壤有机物质含量和土壤肥力,并对土壤有害阴、阳离子能起到缓冲作用,明显改善土壤物理性状和盐分组成。
为克服烟气脱硫石膏改良滨海盐渍土壤中产生的土壤含盐量增大、营养物质减少等不足的缺点,本研究通过盆栽实验开展了不同重量配比的园林废弃物堆肥与适量烟气脱硫石膏混合施用对滨海盐渍土的改良效果研究,分析了混合改良剂对盐渍土壤理化性质和植物生长发育的影响,为滨海盐渍土改良提供技术参考,并为城市固废提供适合的处置方式和综合利用途径。

实验土样取自上海南汇东滩的表层盐渍土,自然风干后磨碎过2 mm筛作为原土备用;园林废弃物堆肥取自上海植物园,主要原料是植物树枝及落叶等;烟气脱硫石膏取自上海外高桥电厂,主要成分为CaSO4·2H2O (CaSO4占含量的90.0%),营养物质含量较少,主要实验材料的理化性质见表1





根据程镜润等[7]和MAO等[8]的实验结果,25 g·kg?1是该区域盐渍土改良剂的适宜施用量,因此,本研究中烟气脱硫石膏施加量为固定的25 g·kg?1。实验于上海应用技术大学玻璃温室内进行,设6个水平的处理,分别为:T1处理(原土,空白对照)、T2处理(原土+烟气脱硫石膏)、T3处理(原土+烟气脱硫石膏+5%堆肥)、T4处理(原土+烟气脱硫石膏+10%堆肥)、T5处理(原土+烟气脱硫石膏+20%堆肥)、T6处理(原土+烟气脱硫石膏+40%堆肥),其中堆肥百分比均为重量配比,每个处理的土壤重量均为2.0 kg,各5次重复。
首先将50 g烟气脱硫石膏与原土混合(T1处理除外),然后将堆肥按不同重量配比,分别加入制成样品装盆。实验过程中保持良好的温度和湿度条件,不断浇水以保持土壤湿度,保证改良剂与土壤充分反应,并通过浇灌排出土壤盐分。60 d后种植黑麦草,每个样盆放入20颗黑麦草种子,种植期间,浇水量以盆底刚刚渗出水为宜,各样盆统一浇水和管理措施,种植20 d后统计黑麦草发芽情况,50 d左右盆栽实验结束。

盆栽实验结束后,选取10株长势相近的黑麦草植株冲洗干净,分别测定地上、地下部分长度以及总重;然后将植株放置于烘箱内以85 ℃进行12 h烘干,取出后分别测定地上、地下部分干重。最后将植株样品研磨成粉末状,过1 mm筛后,采用H2SO4-H2O2消煮,测定全氮、全磷和全钾含量。实验结束后,收集土壤样品,风干后,过1 mm筛,以测试理化性质。土壤pH采用酸度计实测,土壤电导率值采用电导仪[14]测定;土壤有机质、有效磷、有效氮、速效钾的含量测定依照《森林土壤分析方法》[15]

实验结果统计与分析采用Excel 2015和SPSS 17.0软件处理。土壤理化性质、养分含量、植物生长指标等均以实验重复平均值显示,不同处理间指标的差异采用Duncan法检验。

图1为改良剂对土壤pH的影响。施加烟气脱硫石膏后土壤pH明显低于对照处理,由8.61降至7.67,降幅为10.9%,结果与已有研究[2, 6-7]的结果一致。烟气脱硫石膏施用量固定的情况下,混合施用园林废弃物堆肥,随着堆肥施用量的增加,pH呈现逐步降低的趋势,降幅为6.8%~13.8%;当堆肥重量配比在15%~20%时,盐渍土壤的pH下降最为明显。各处理下土壤pH均降到8.0以下,符合多数植物的生长要求。


园林废弃物堆肥混合施用后,堆肥中的腐解酸能够与土壤碱性物质发生中和反应,致使土壤pH进一步降低。堆肥腐解酸还可以保持土壤水分和提高微生物活性[13],也会降低土壤pH。腐殖酸类物质也可以结合烟气脱硫石膏中的钙离子,减少钙离子对钠离子的置换,因此,在大量使用堆肥的情况下土壤pH能够较快地趋于稳定。
图2为改良剂对土壤EC的影响。在盐渍土壤中加入烟气脱硫石膏后EC显著升高,增幅可高达8.4%,其原因是烟气脱硫石膏是一种中等溶解度盐,可以连续释放硫酸根离子和钙离子[16]。在烟气脱硫石膏施用量固定的情况下,进一步增施堆肥可以降低土壤EC,堆肥重量配比20%~40%时,对比T2处理,EC降低了11.6%,对比T1处理,EC也降低了4.2%左右。这说明混合改良剂可以降低土壤全盐含量,堆肥增加了土壤孔隙度,提高了土壤渗透性,随着时间的推移,土壤中随水运移速度较快的盐离子会被进一步淋洗掉。



图3是改良剂对土壤有机质含量的影响。施加烟气脱硫石膏后盐渍土壤有机质含量下降21.6%左右。施加不同重量配比的堆肥后,土壤有机质含量随堆肥施用量增加逐步升高,T6处理时,盐渍土壤有机质含量比对照处理高出171.6%。在施加烟气脱硫石膏后,土壤有机质含量下降的主要原因是土壤pH的降低减少了有机质在水中的溶解,降低了水溶性有机质的含量[17]。园林废弃物堆肥中的有机质含量很高,增施到盐渍土壤后可使土壤有机质含量有较大程度的增加。


图4为改良剂对土壤营养物质含量的影响。施加烟气脱硫石膏后盐渍土壤有效磷、有效氮和速效钾含量均有所降低,降幅分别为30.1%、40.5%和36.1%。相对于T2处理,施加堆肥后盐渍土壤中有效磷、有效氮和速效钾含量均有明显增加,增幅分别为96.0%~182.7%,40.0%~186.7%和71.7%~157.5%。


烟气脱硫石膏中的钙离子在交换盐渍土壤胶体上的钠离子后,仍会以交换态形式留在土壤中吸附土壤中富集的磷酸根离子[18],或置换土壤中的铵离子和交换性钾离子,并随水流出而降低了土壤营养物质含量[8-9]。由于堆肥的主要原料来源于植物枝条和落叶等,可促进土壤中小团聚体向大团聚体转化,提高土壤中毛管孔隙度和饱和导水率,可以显著提高氮、磷、钾含量[19]。此外,随着土壤pH的降低,土壤微生物活性增大,这可能将部分磷转化为易于被植物吸收的形态,从而导致土壤有效磷的明显增加[20]。而有效氮的增加还可能与烟气脱硫石膏促进了堆肥中的有机氮释放有关[21],吕子文等[10]的研究结果则表明堆肥可以促进土壤中钾的活性,增加了土壤速效钾的含量。

改良剂对植物发芽率和叶片数量的影响见图5图6。由图5可知,黑麦草在盐渍土壤条件下的发芽率仅有50.0%,施加烟气脱硫石膏后,发芽率降至42.0%左右,这说明烟气脱硫石膏虽能降低土壤碱化度,但短时间内过量施用会导致盐分过量积累,以致土壤含盐浓度超过植物正常的耐受力,从而影响了黑麦草发芽率,该结果与CLARK等[22]和毛玉梅等[23]的研究结果一致。施加园林废弃物堆肥后,土壤孔隙度增大,土壤pH降低,均可促进植物种子萌发和发芽率的提升。结果表明,随着堆肥施用量的增加,黑麦草发芽率也逐渐增加,当堆肥重量配比为40%时,发芽率达到90.0%左右。




图6可知,施加烟气脱硫石膏后的黑麦草叶片分蘖数大于对照处理,但差异不显著。随着堆肥施用量的增加,黑麦草叶片分蘖数也逐步增加,但堆肥重量配比为20%~40%时,差异并不显著。

表2为改良剂对黑麦草生长特征变化的影响结果。施加烟气脱硫石膏后黑麦草的重量和高度均比对照处理有所增加,但差异并不显著。混合园林废弃物堆肥后,黑麦草重量和高度等指标均随堆肥施用量增加而呈现逐渐增加的趋势。T6处理时,黑麦草总湿质量、地上干质量、株高和根长等均达到最大值,分别较对照处理增加了154.1%、100.0%、89.2%和103.6%,比单一施加烟气脱硫石膏的处理增加了94.2%、75.0%、66.2%和71.3%。




烟气脱硫石膏中所含高价离子可降低土壤胶体表面由负电荷相互排斥而产生的电位势,促进土壤胶体的凝聚,从而利于土壤团粒结构形成,改善作物根系的生长环境,促进作物的生长和发育[1, 7-8, 24]。烟气脱硫石膏中大量的钙和硫等营养物质也会促进植物的生长[7],因此部分土壤营养物质的减少并没有影响到植物生物量的增加。混合改良剂施用后,由于土壤pH、全盐的降低以及土壤有机质、营养物质的增加,进一步促进了黑麦草的生长。园林废弃物堆肥不仅进改善了盐渍土壤的容重与孔隙度[25],提高了土壤养分含量,而且烟气脱硫石膏经过一段时间的灌溉溶解后脱盐程度也会逐步增大[9],两者混合施用对盐碱地植物的根系生长更加有利[26]

表3是改良剂对黑麦草植株内营养物质变化的影响。施加烟气脱硫石膏后植株全氮、全钾含量均有所升高。混合施用园林废弃物堆肥后,植株全氮、全钾含量再度升高,且随堆肥施加量增加而呈现上升的趋势,与T1和T2处理相比差异显著。T6处理时,植株全氮、全钾含量增加效果最为明显,分别较对照处理增加了139.9%和40.8%,比单一施加烟气脱硫石膏的处理增加了83.3%和29.8%。植株全磷含量在施加烟气脱硫石膏后有所下降,降幅为25.4%。混合施加园林废弃物堆肥后,随着堆肥施加量的增加,植株全磷含量也逐渐增加,T6处理时略高于对照处理。结果表明,烟气脱硫石膏抑制了植物对土壤有效磷的吸收,施用肥后土壤有效磷增加,植物吸收磷的数量也增加,与龚小强[27]的研究结果一致。




施加烟气脱硫石膏或者2种改良剂混合施用,植物体内的全氮、全钾含量均有所增加,说明烟气脱硫石膏的施用虽然降低了土壤营养物质含量,但并未影响到植物对氮、钾2种营养物质的吸收,其原因应该是由于土壤孔隙度的增大和pH的降低促进了植物的根系生长(植物的根系长度和地下重量均增加),而植物根系对养分的生物有效性有重要作用。
烟气脱硫石膏施用后植株的全磷含量有明显下降,这说明烟气脱硫石膏抑制了植物对磷的吸收。相关研究表明,土壤中的磷大部分都是迟效性的,植物生长对磷的利用率本来就比较低,一般为5%~15%,因此,土壤有效磷的含量直接影响植物体内的磷含量[28-29],烟气脱硫石膏减少了土壤有效磷含量,也就降低了植株中的全磷含量。混合园林废弃物堆肥后,植物体内全磷含量逐步增加,这说明堆肥能将自身磷转换成易被植物吸收的有效磷[13],植株全磷含量相应增加。

研究结果表明,烟气脱硫石膏施用量固定的情况下,园林废弃物堆肥占比越高,植物生长越旺盛。但张强等等[12]的研究结果表明,过高的比例会影响植物生长,对花卉生长和品质的影响效果出现降低趋势,园林废弃物堆肥的添加比例以30%~50%为宜[11, 13]。根据本研究的结果,推荐使用25 g·kg?1作为烟气脱硫石膏最佳施用量,以及20%~40%作为园林废弃物堆肥的最佳重量比,在此条件下即可取得较好的盐渍土改良效果。目前,上海地区烟气脱硫石膏出厂费用大约60元·t?1,而园林废弃物堆肥的生产成本约为100元·t?1,因此,按照改良10 000 m2(翻深30 cm,土壤容重1.40 g·cm?3)盐渍土壤计算,需要105 kg的烟气脱硫石膏和840 kg的园林废弃物堆肥,合计成本费用大约仅需要90.3元。目前,滨海盐渍土改良普遍采用灌溉压盐、埋管排盐等方法,轻、中度碱化盐土的改良多在一定灌排条件下结合农业生物措施改良,重碱化盐土的改良则主要是配合化学改良剂[30],以上方法无论是时间和成本都相对较高。本研究中2种改良剂的施用成本相对于传统的工程措施和材料而言都相对较低,还能够降低城市固体废弃物的处理成本。

1)烟气脱硫石膏能显著降低滨海盐渍土壤pH,但增加了土壤全盐含量。混合园林废弃物堆肥后,土壤pH进一步降低,同时增加了土壤盐离子的流失,进而降低了土壤全盐含量。
2)烟气脱硫石膏和园林废弃物堆肥2种改良剂的混合施用,能够显著增加盐渍土壤营养物质的含量,从而改善了单独施用烟气脱硫石膏改良盐碱土所造成的土壤营养物质降低的不足。
3)烟气脱硫石膏混合园林废弃物堆肥一起施用可以提高盐渍土壤植物发芽率,有效改善土壤的理化性质,增加土壤和植物体内的营养物质含量,最终增加植物的生物量。
4)相对于传统的工程措施和改良材料,烟气脱硫石膏混合园林废弃物堆肥施用成本较低,还可以作为城市固体废弃物处理的有效手段,降低固废处理成本,一举两得。

参考文献 (30)
相关话题/土壤 园林 植物 实验 城市