3.新疆维吾尔自治区固体废物管理中心,克拉玛依 834000
1.Jereh Environmental Protection Technology Co. Ltd., Yantai 264000, China
3.Xinjiang Uygur Autonomous Region Solid Waste Management Centre, Kelamayi 834000, China
针对油浸泥土中石油烃去除机制不清的问题,利用自制热解炉小试装置,研究了不同条件下油浸泥土中石油烃的处理效果,通过调节加热温度、时间、初始含油率和初始含水率等参数,模拟油浸泥土热脱附过程。结果表明:利用小试装置,当初始含油率为11.3%、初始含水率为20%时,热脱附温度300 °C、热脱附时间4 h为最佳处理工艺,处理后油浸泥土中的含油率可降低至0.7%,远低于《油气田含油污泥综合利用污染控制要求》(DB 65/T 3998-2017)中2%的修复标准,石油烃的去除率可达到93.8%;在常见油浸泥土含水率20%及最佳处理工艺下,随着初始含油率的升高,热脱附处理后的固相含油率逐渐升高,但石油烃去除率基本保持不变。适中的油浸泥土含水率有利于热脱附处理,最佳初始含水率为10%~20%。
The mechanism of petroleum hydrocarbon removal in petroleum-contaminated soils is unclear. The self-dependent small-scale experimental device of pyrolysis furnace was used to investigate the petroleum hydrocarbon treatment effects in petroleum-contaminated soils under different conditions. Through adjusting the heating temperature, heating time, initial petroleum content and moisture content, the process of in-situ thermal remediation was simulated. The results showed that the optimum conditions for petroleum hydrocarbon remove were heating temperature of 300 °C and heating time of 4 h for petroleum-contaminated soils with initial petroleum content of 11.3% and initial water content of 20%. The petroleum content of treated soil decreased to 0.7%, which was far below the remediation standard value of 2% in the pollution control requirements for comprehensive utilization of oil and gas field oily sludge (DB 65/T 3998-2017). The removal rate of petroleum hydrocarbon in soils reached 93.8%. At the water content of 20% in petroleum-contaminated soils and optimum treatment conditions, with the increase of initial oil content, the oil content of solid phase after thermal desorption increases gradually, while the petroleum hydrocarbon removal rate almost unchanged. Moderate water content was benefit to the remediation, and the optimum initial moisture content was 10%~20%.
.
Diagram of pyrolysis furnace
Schematic diagram of pyrolysis furnace
Appearance properties of treated soil at different heating temperatures
不同温度条件下热脱附处理后油浸泥土样品的含油率
Petroleum content in treated soil at differentheating temperatures
Appearance properties of treated soil at different heating times
不同加热时间条件下热脱附处理后油浸泥土样品的含油率
Petroleum content in treated soilat different heating times
不同初始含油率条件下热脱附处理后油浸泥土样品的含油率及去除率
Petroleum Content in treated soil and removal rate at different initial petroleum contents of soil
不同初始含水率条件下热脱附处理后油浸泥土样品的含油率及能耗
Petroleum content and energy consumption of treated soil at different moisture contents
[1] | 王万福, 金浩, 石丰, 等. 含油污泥热解技术[J]. 石油与天然气化工, 2010, 39(2): 173-177. doi: 10.3969/j.issn.1007-3426.2010.02.024 |
[2] | 周浩, 汪根宝, 李蒙, 等. 含油钻屑的热解特性[J]. 环境工程学报, 2017, 11(12): 6421-6428. doi: 10.12030/j.cjee.201702140 |
[3] | MELE A R, CIBRIAN N M, SABATE M C, et al. Oil pollution in soils and sediments from the Northern Peruvian Amazon[J]. Science of the Total Environment, 2018, 610-611: 1010-1019. doi: 10.1016/j.scitotenv.2017.07.208 |
[4] | 张新建, 王茂仁. 浅谈石油烃污染土壤间接热脱附修复技术[J]. 化工管理, 2018, 485(14): 113-114. doi: 10.3969/j.issn.1008-4800.2018.14.089 |
[5] | 周东美, 郝秀珍, 薛艳, 等. 污染土壤的修复技术研究进展[J]. 生态环境学报, 2004, 13(2): 234-242. doi: 10.3969/j.issn.1674-5906.2004.02.028 |
[6] | 吴嘉茵, 方战强, 薛成杰, 等. 我国有机物污染场地土壤修复技术的专利计量分析[J]. 环境工程学报, 2019, 13(8): 2015-2024. |
[7] | 杨振, 靳青青, 衣桂米, 等. 原地异位建堆热脱附技术和设备在石油污染土壤修复中的应用[J]. 环境工程学报, 2019, 13(9): 2083-2091. |
[8] | LI D C, XU W F, MU Y, et al. Remediation of petroleum-contaminated soil and simultaneous recovery of oil by fast pyrolysis[J]. Environmental Science&Technology, 2018, 52: 5330-5338. doi: 10.1021/acs.est.7b03899 |
[9] | MECHATI F, ROTH E, RENAULT V, et al. Pilot scale and theoretical study of thermal remediation of soils[J]. Environmental Engineering Science, 2004, 21: 361-370. doi: 10.1089/109287504323067003 |
[10] | 刘凯, 张瑞环, 王世杰. 污染地块修复原位热脱附技术的研究及应用进展[J]. 中国氯碱, 2017(12): 31-37. doi: 10.3969/j.issn.1009-1785.2017.12.013 |
[11] | 张攀, 高彦征, 孔火良. 污染土壤中硝基苯热脱附研究[J]. 土壤, 2012, 44(5): 801-806. doi: 10.3969/j.issn.0253-9829.2012.05.015 |
[12] | BEATTIE S D, LANGMI H W, MCGRADY G S. In situ thermal desorption of H2 from LiNH2-2LiH monitored by environmental SEM[J]. International Journal of Hydrogen Energy, 2009, 34(1): 376-379. doi: 10.1016/j.ijhydene.2008.10.062 |
[13] | LIANG H C, UDELL K S. Experimental and theoretical investigation of vaporization of liquid hydrocarbon mixtures in water-wetted porous media[J]. Water Resources Research, 1999, 35(3): 635-649. doi: 10.1029/1998WR900098 |
[14] | FALCIGLIA P P, GIUSTRA M G, VAGLIASINDI F G A. Soil texture affects adsorption capacity and removal efficiency of contaminants in ex situ remediation by thermal desorption of diesel-contaminated soils[J]. Chemistry & Ecology, 2011, 27(1): 119-130. |
[15] | PARK C M, KATZ L E, LILJESTRAND H M. Mercury speciation during in situ thermal desorption in soil[J]. Journal of Hazardous Materials, 2015, 300: 624-632. doi: 10.1016/j.jhazmat.2015.07.076 |
[16] | 张学良, 廖朋辉, 李群, 等. 复杂有机物污染地块原位热脱附修复技术的研究[J]. 土壤通报, 2018, 49(4): 993-1000. |
[17] | 王锦淮. 原位热脱附技术在某有机污染场地修复中试应用[J]. 化学世界, 2018, 59(3): 182-186. |
[18] | BAKER R S, LACHANCE J C. In situ thermal remediation of contaminated sites: A technique for the remediation source zones[R]. Fitchburg: Terra Therm Incorporation, 2006. |
[19] | 刘昊, 张峰, 马烈. 有机污染场地原位热修复: 技术与应用[J]. 环境工程设计, 2017(8): 93-98. |
[20] | 赵永建, 李贺, 周丹华, 等. 红外法测定含油土壤(污泥)中石油类的研究[J]. 江西化工, 2017(2): 38-39. doi: 10.3969/j.issn.1008-3103.2017.02.011 |
[21] | 王嫣云, 冯真, 周泽军, 等. 油污染场地土壤热解终温试验研究[J]. 安全与环境学报, 2017, 17(6): 2287-2291. |
[22] | LUNDIN L, AURELL J, MARKLUND S. The behavior of PCDD and PCDF during thermal treatment of waste incineration ash[J]. Chemosphere, 2011, 84(3): 305-310. doi: 10.1016/j.chemosphere.2011.04.014 |
[23] | 王瑛, 李扬, 黄启飞, 等. 温度和停留时间对DDT 污染土壤热脱附效果的影响[J]. 环境工程, 2012, 30(1): 116-120. |
[24] | LAM S S, RUSSELL A D, LEE C L, et al. Microwave-heated pyrolysis of waste automotive engine oil: Influence of operation parameters on the yield, composition, and fuel properties of pyrolysis oil[J]. Fuel, 2012, 92(1): 327-339. doi: 10.1016/j.fuel.2011.07.027 |
[25] | ARESTA M, DIBENEDETTO A, FRAGALE C, et al. Thermal desorption of polychlorobiphenyls from contaminated soils and their hydrodechlorination using Pd- and Rh-supported catalysts[J]. Chemosphere, 2008, 70(6): 1052-1058. doi: 10.1016/j.chemosphere.2007.07.074 |
[26] | 王瑛, 李扬, 黄启飞, 等. 污染物浓度与土壤粒径对热脱附修复DDTs污染土壤的影响[J]. 环境科学研究, 2011, 24(9): 1016-1022. |
[27] | 贺晓珍, 周友亚, 汪莉, 等. 土壤气相抽提法去除红壤中挥发性有机污染物的影响因素研究[J]. 环境工程学报, 2008, 2(5): 679-683. |
[28] | 孙磊, 蒋新, 周健民, 等. 五氯酚污染土壤的热修复初探[J]. 土壤学报, 2004, 41(3): 462-465. doi: 10.3321/j.issn:0564-3929.2004.03.021 |
[29] | ZHAO C, DONG Y, FENG Y, et al. Thermal desorption for remediation of contaminated soil: A review[J]. Chemosphere, 2019, 221: 841-855. doi: 10.1016/j.chemosphere.2019.01.079 |