刘明柱3,
刘伟江1,
田西昭2,
康阳1,
李书焱1,
王丽3,
陈坚1,,
1.生态环境部环境规划院,长江经济带生态环境联合研究中心,北京 100012
2.河北省地质环境监测院,河北省地质资源环境监测与保护重点实验室,石家庄 050021
3.中国地质大学(北京)水资源与环境学院,北京 100083
作者简介: 宫志强(1991—),男,硕士研究生。研究方向:污染场地调查和水土污染防治等。E-mail:1206227525@qq.com.
通讯作者: 陈坚,situchen@qq.com
中图分类号: X703
Optimal method of groundwater pollution plume capture by single well
GONG Zhiqiang1,2,,LIU Mingzhu3,
LIU Weijiang1,
TIAN Xizhao2,
KANG Yang1,
LI Shuyan1,
WANG Li3,
CHEN Jian1,,
1.Yangtze River Economic Zone Ecological Environment Joint Research Center, Chinese Academy for Environmental Planning, Ministry of Ecology and Environment, Beijing 100012, China
2.Hebei Key Laboratory of Geological Resources and Environment Monitoring and Protection, Hebei Geological Environmental Monitoring Institute, Shijiazhuang 050021, China
3.School of Water Resources and Environments, China University of Geosciences (Beijing), Beijing 100083, China
Corresponding author: CHEN Jian,situchen@qq.com
CLC number: X703
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:针对不同抽水井捕获半径及驻点获取方法存在局限性和误差的问题,以潜水、承压水2个类型污染场地为例,分别采用实测法、解析解公式法、数值模拟法3种方法计算单井捕获半径及驻点值;通过对比分析,研究了不同条件下3种方法的局限性及精确度;探讨了不同类型污染场地获取捕获半径及驻点的最适宜方法。结果表明:对于承压水类型,解析解计算值与实际观测值误差较小,为3.2%;对于水位降深相对于含水层厚度不可忽略的潜水类型,解析解计算值与实际观测值误差较大,为80.7%;在充分掌握水文地质条件时,数值模型模拟结果与实际观测误差值不超过10%。因此,当场地水文地质情况符合解析解公式假设条件时,可采用解析解公式法获取单井捕获半径及驻点,否则须利用数值模拟方法或实测法获取相关参数。研究成果为不同类型污染场地选择合适方法获取捕获半径及驻点提供了参考。
关键词: 抽水实验实测法/
解析解公式法/
数值模拟/
捕获半径/
驻点/
最优
Abstract:In view of the limitations and errors in the acquisition methods of capture radius and stagnation points of different pumping wells, two types of contaminated sites, such as unconfined aquifer and confined aquifer, were taken as examples. Subsequently, the capture radius and stagnation point of a single well are calculated by using the measurement method, the analytical solution formula method and the numerical simulation method, respectively. Through comparative analysis, the limitations and accuracy of the three methods under different conditions were studied. The optimum methods for obtaining the capture radius and stagnation point of different types of contaminated sites were discussed. The results show that for the type of confined aquifer, a low error of 3.2% between the calculated value of analytical solution and the measured value occurred. For the type of unconfined aquifer, its groundwater level drawdown could not be ignored with respect to aquifer thickness, a relatively high error of 80.7% between the calculated value of analytical solution and the measured value occurred. When the hydrogeological conditions were fully mastered, the error between the numerical model simulation result and the measured value did not exceed 10%. Therefore, when the hydrogeological conditions in the field met the assumed conditions of the analytical solution formula, the analytical solution formula could be used to obtain the capture radius and stagnation point of a single well, otherwise, the numerical simulation or field measurement method should be used to obtain the relevant parameters. This study provides a reference for selecting suitable methods to obtain the capture radius and stagnation point of different types of contaminated sites.
Key words:pumping test method/
analytic solution formula/
numerical simulation/
capture radius/
stagnation point/
optimum.
图1污染羽截获半径示意
Figure1.Schematic of contaminated plume capture radius
下载: 全尺寸图片幻灯片
图2承压含水层抽水前的等水位线
Figure2.Contour of groundwater table before pumping in confined aquifer
下载: 全尺寸图片幻灯片
图3承压含水层抽水稳定后的等水位线
Figure3.Contour of groundwater table after pumping stability
下载: 全尺寸图片幻灯片
图4潜水含水层抽水前的等水位线图
Figure4.Contour of groundwater table before pumping in unconfined aquifer
下载: 全尺寸图片幻灯片
图5潜水含水层抽水稳定后的等水位线图
Figure5.Contour of groundwater table after pumping stability in unconfined aquifer
下载: 全尺寸图片幻灯片
图6承压含水层污染场地单井捕获半径粒子追踪
Figure6.Particle tracking of single well capture radius in contaminated sites of confined aquifer
下载: 全尺寸图片幻灯片
图7边界条件概化
Figure7.Schematic of boundary conditions
下载: 全尺寸图片幻灯片
图8潜水含水层污染场地单井捕获半径粒子追踪
Figure8.Particle tracking of single well capture radius in contaminated sites of unconfined aquifer
下载: 全尺寸图片幻灯片
表1不同方式获取抽水井捕获半径及驻点值的对比
Table1.Comparison between the capture radius and stagnation points obtained by different methods
场地类型 | 参数类型 | 抽水流量/ (m3·d?1) | 抽水实验 实测值/m | 解析解公式 计算值/m | 数值模 拟值/m | 解析解公式 法误差值/% | 数值模拟法 误差值/% |
承压水类型 | 捕获半径 | 120 | 290 | 293.7 | 285 | 1.3 | 1.7 |
驻点 | 120 | 95 | 93.5 | 98 | 1.6 | 3.2 | |
潜水类型 | 捕获半径 | 60 | 88 | 33.3 | 84 | 58.4 | 4.6 |
驻点 | 60 | 55 | 10.6 | 50 | 80.7 | 9.1 |
场地类型 | 参数类型 | 抽水流量/ (m3·d?1) | 抽水实验 实测值/m | 解析解公式 计算值/m | 数值模 拟值/m | 解析解公式 法误差值/% | 数值模拟法 误差值/% |
承压水类型 | 捕获半径 | 120 | 290 | 293.7 | 285 | 1.3 | 1.7 |
驻点 | 120 | 95 | 93.5 | 98 | 1.6 | 3.2 | |
潜水类型 | 捕获半径 | 60 | 88 | 33.3 | 84 | 58.4 | 4.6 |
驻点 | 60 | 55 | 10.6 | 50 | 80.7 | 9.1 |
下载: 导出CSV
[1] | 姜烈, 何江涛, 姜永海, 等. 地下水硝酸盐污染抽出处理优化方法模拟研究[J]. 环境科学, 2014, 35(7): 2572-2578. |
[2] | 王燕.硝酸盐地下水污染数值模拟与抽出-处理技术抽水井优化研究[D]. 保定: 河北农业大学, 2014. |
[3] | 蒲敏. 污染场地地下水抽出处理技术研究[J]. 环境工程, 2017, 35(4): 6-10. |
[4] | 万鹏.污染地下水抽出-处理技术的抽水方案优化研究[D]. 北京: 清华大学, 2013. |
[5] | 张艳.污染场地抽出-处理技术影响因素及优化方案研究[D]. 北京: 中国地质大学(北京), 2010. |
[6] | 任增平. 水力截获技术及其研究进展[J]. 水文地质工程地质, 2001(6): 73-77. doi: 10.3969/j.issn.1000-3665.2001.06.026 |
[7] | JAVANDEL I, TSANG C. Capture-zone type curves: A tool for aquifer cleanup[J]. Groundwater, 1986, 24(5): 616-625. |
[8] | GRUBB S. Analytical model for estimation of steady-state capture zones of pumping wells in confined and unconfined aquifers[J]. Groundwater, 1993, 31(1): 27-32. |
[9] | ZLOTNIK V. A Effects of anisotropy on the capture zone of a partially penetrating well[J]. Groundwater, 1997, 35(5): 842-847. |
[10] | BAIR E S, LAHM T D. Variations in capture-zone geometry of a partially penetrating pumping well in an unconfined aquifer[J]. Groundwater, 1996, 34(5): 842-852. |
[11] | SATKIN R L, BEDIENT P B. Effectiveness of various aquifer restoration schemes under variable hydrogeologic conditions[J]. Groundwater, 1988, 26(4): 488-498. |
[12] | KIM J W. Optimal pumping time for a pump-and-treat determined from radial convergent tracer tests[J]. Geosciences Journal, 2014, 18(1): 69-80. doi: 10.1007/s12303-013-0051-x |
[13] | 刘明柱, 陈鸿汉, 胡丽琴, 等. 生物降解作用下地下水中TCE、PCE迁移转化的数值模拟研究[J]. 地学前缘, 2006, 13(1): 155-159. doi: 10.3321/j.issn:1005-2321.2006.01.021 |
[14] | 于虎广. 基于Visual Modflow的曲周县地下水中盐分运移模拟研究[D]. 邯郸: 河北工程大学, 2012. |
[15] | 陈崇希, 王旭升, 胡立堂. 地下水流数值模拟中抽水井水位的校正[J]. 水利学报, 2007, 38(4): 481-485. doi: 10.3321/j.issn:0559-9350.2007.04.016 |
[16] | 张海岛.长治盆地浅层孔隙地下水流数值模拟研究[D]. 邯郸: 河北工程大学, 2017. |
[17] | 白福高, 刘明柱, 刘伟江, 等. 潮白河河道地下水人工回灌包气带水分运移模拟[J]. 环境污染与防治, 2016, 38(6): 88-91. |
[18] | 刘燕, 辛璐君, 郭建青, 等. 抽水实验确定各向异性含水层参数的实例讨论[J]. 勘察科学技术, 2012(6): 5-9. doi: 10.3969/j.issn.1001-3946.2012.06.002 |
[19] | 蒋辉. 基于Aquifer Test的抽水实验参数计算方法分析[J]. 水文地质工程地质, 2011, 38(2): 35-38. doi: 10.3969/j.issn.1000-3665.2011.02.006 |
[20] | 中华人民共和国水利部发布. 中华人民共和国水利行业标准水利水电工程钻孔抽水试验规程: SL 320-2005[M]. 北京: 中国水利水电出版社, 2005. |
Turn off MathJax -->
点击查看大图
图( 8)表( 1)
计量
文章访问数:1179
HTML全文浏览数:1179
PDF下载数:39
施引文献:0
出版历程
收稿日期:2018-12-04
录用日期:2019-05-24
网络出版日期:2019-10-11
-->刊出日期:2019-10-01
-->
单井捕获地下水污染羽的优化方法
宫志强1,2,,刘明柱3,
刘伟江1,
田西昭2,
康阳1,
李书焱1,
王丽3,
陈坚1,,
通讯作者: 陈坚,situchen@qq.com
作者简介: 宫志强(1991—),男,硕士研究生。研究方向:污染场地调查和水土污染防治等。E-mail:1206227525@qq.com 1.生态环境部环境规划院,长江经济带生态环境联合研究中心,北京 100012
2.河北省地质环境监测院,河北省地质资源环境监测与保护重点实验室,石家庄 050021
3.中国地质大学(北京)水资源与环境学院,北京 100083
收稿日期: 2018-12-04
录用日期: 2019-05-24
网络出版日期: 2019-10-11
关键词: 抽水实验实测法/
解析解公式法/
数值模拟/
捕获半径/
驻点/
最优
摘要:针对不同抽水井捕获半径及驻点获取方法存在局限性和误差的问题,以潜水、承压水2个类型污染场地为例,分别采用实测法、解析解公式法、数值模拟法3种方法计算单井捕获半径及驻点值;通过对比分析,研究了不同条件下3种方法的局限性及精确度;探讨了不同类型污染场地获取捕获半径及驻点的最适宜方法。结果表明:对于承压水类型,解析解计算值与实际观测值误差较小,为3.2%;对于水位降深相对于含水层厚度不可忽略的潜水类型,解析解计算值与实际观测值误差较大,为80.7%;在充分掌握水文地质条件时,数值模型模拟结果与实际观测误差值不超过10%。因此,当场地水文地质情况符合解析解公式假设条件时,可采用解析解公式法获取单井捕获半径及驻点,否则须利用数值模拟方法或实测法获取相关参数。研究成果为不同类型污染场地选择合适方法获取捕获半径及驻点提供了参考。
English Abstract
Optimal method of groundwater pollution plume capture by single well
GONG Zhiqiang1,2,,LIU Mingzhu3,
LIU Weijiang1,
TIAN Xizhao2,
KANG Yang1,
LI Shuyan1,
WANG Li3,
CHEN Jian1,,
Corresponding author: CHEN Jian,situchen@qq.com
1.Yangtze River Economic Zone Ecological Environment Joint Research Center, Chinese Academy for Environmental Planning, Ministry of Ecology and Environment, Beijing 100012, China2.Hebei Key Laboratory of Geological Resources and Environment Monitoring and Protection, Hebei Geological Environmental Monitoring Institute, Shijiazhuang 050021, China
3.School of Water Resources and Environments, China University of Geosciences (Beijing), Beijing 100083, China
Received Date: 2018-12-04
Accepted Date: 2019-05-24
Available Online: 2019-10-11
Keywords: pumping test method/
analytic solution formula/
numerical simulation/
capture radius/
stagnation point/
optimum
Abstract:In view of the limitations and errors in the acquisition methods of capture radius and stagnation points of different pumping wells, two types of contaminated sites, such as unconfined aquifer and confined aquifer, were taken as examples. Subsequently, the capture radius and stagnation point of a single well are calculated by using the measurement method, the analytical solution formula method and the numerical simulation method, respectively. Through comparative analysis, the limitations and accuracy of the three methods under different conditions were studied. The optimum methods for obtaining the capture radius and stagnation point of different types of contaminated sites were discussed. The results show that for the type of confined aquifer, a low error of 3.2% between the calculated value of analytical solution and the measured value occurred. For the type of unconfined aquifer, its groundwater level drawdown could not be ignored with respect to aquifer thickness, a relatively high error of 80.7% between the calculated value of analytical solution and the measured value occurred. When the hydrogeological conditions were fully mastered, the error between the numerical model simulation result and the measured value did not exceed 10%. Therefore, when the hydrogeological conditions in the field met the assumed conditions of the analytical solution formula, the analytical solution formula could be used to obtain the capture radius and stagnation point of a single well, otherwise, the numerical simulation or field measurement method should be used to obtain the relevant parameters. This study provides a reference for selecting suitable methods to obtain the capture radius and stagnation point of different types of contaminated sites.