4.生态环境部对外合作与交流中心,北京 100035
1.Beijing Construction Engineering Group Environmental Remediation Co. Ltd., Beijing 100015, China
2.National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China
3.State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
4.Foreign Environmental Cooperation Center, Ministry of Ecological and Environment, Beijing 100035, China
异位热脱附技术具有污染物去除率高、修复周期短、普适性强等显著优势,是目前修复有机污染土壤最有效的技术之一。通过资料、文献查阅及现场调研,梳理了异位热脱附技术及设备在国内外的研究现状及在我国的应用发展历程,结合工程案例,分析了典型直接热脱附设备、间接热脱附设备的工艺技术路线,进而提出开展实际污染场地修复时的设备选择建议,以及热脱附技术的理论研究和设备发展方向,为我国有机污染土壤异位热脱附修复技术的推广和应用提供参考。
The ex-situ thermal desorption technology has significant advantages such as high removal efficiency, short remediation period and strong application scope, which has been proven to be one of the most effective techniques for organic contaminated sites remediation. This paper introduces the research status at home and abroad, and application situation of ex-situ thermal desorption technology and equipment in China by means of data, literature review and field investigation. Meanwhile, combined with the engineering cases in China, the corresponding technology routes of direct and indirect thermal desorption equipment are analyzed, respectively. The equipment selection recommendations for the practical contaminated site remediation is proposed, as well as the theoretical research and equipment development orientation of thermal desorption technology, which will provide reference for the popularization and application of ex-situ thermal desorption technology in organic contaminated sites remediation in China.
.
Thermal desorption equipment for remediation of contaminated site in Shanxi province, China
First set of thermal desorption equipment for engineering application in China
北京建工环境修复股份有限公司“863”计划热脱附设备
Thermal desorption equipment supported by “863” Program of Beijing Construction Engineering Group Environmental Remediation Co. Ltd.
Technological route of American thermal desorption equipment
Technological route of Finnish thermal desorption equipment
Technological route of thermal desorption equipment
Technological route of thermal desorption equipment
Technological route of thermal desorption equipment
Technological route of thermal desorption equipment
Comparison of advantages and disadvantages between directly and indirectly heated thermal desorption equipment
[1] | 吴嘉茵, 方战强, 薛成杰, 等. 我国有机物污染场地土壤修复技术的专利计量分析[J]. 环境工程学报, 2019, 13(8): 2015-2024. |
[2] | RAMADASS K, MEGHARAJ M, VENKATESWARLU K, et al. Ecological implications of motor oil pollution: Earthworm survival and soil health[J]. Soil Biology and Biochemistry, 2015, 85: 72-81. doi: 10.1016/j.soilbio.2015.02.026 |
[3] | RUBY M V, LOWNEY Y W, BUNGE A L, et al. Oral bioavailability, bioaccessibility, and dermal absorption of PAHs from soil-state of the science[J]. Environmental Science & Technology, 2016, 50: 2151-2164. |
[4] | EOM I C, RAST C, VEBER A M, et al. Ecotoxicity of a polycyclic aromatic hydrocarbon (PAH)-contaminated soil[J]. Ecotoxicology and Environmental Safety, 2007, 67(2): 190-205. doi: 10.1016/j.ecoenv.2006.12.020 |
[5] | USMAN M. Comment on a comprehensive guide of remediation technologies for oil contaminated soil present works and future directions[J]. Marine Pollution Bulletin, 2016, 109(1): 14-45. doi: 10.1016/j.marpolbul.2016.04.023 |
[6] | KHAN F I, HUSAIN T, HEJAZI R. An overview and analysis of site remediation technologies[J]. Journal of Environmental Management, 2004, 71(2): 95-122. |
[7] | O'BRIEN P L, DESUTTER T M, CASRY F X M, et al. Thermal remediation alters soil properties: A review[J]. Journal of Environmental Management, 2017, 206: 826-835. |
[8] | ARSTRA M, DIBENEDETTO A, FRAGALE C, et al. Thermal desorption of polychlorobiphenyls from contaminated soils and their hydrodechlorination using Pd- and Rh-supported catalysts[J]. Chemosphere, 2008, 70(6): 1052-1058. doi: 10.1016/j.chemosphere.2007.07.074 |
[9] | ZHANG X, YAO A. Pilot experiment of oily cuttings thermal desorption and heating characteristics study[J]. Journal of Petroleum Exploration and Production Technology, 2019, 9(2): 1263-1270. doi: 10.1007/s13202-018-0574-9 |
[10] | 许春娅. 工业污染场地土壤修复技术研究[J]. 资源节约与环保, 2019(3): 99. doi: 10.3969/j.issn.1673-2251.2019.03.086 |
[11] | PERCIN P R D. Application of thermal desorption technologies to hazardous waste sites[J]. Journal of Hazardous Materials, 1995, 40(2): 203-209. doi: 10.1016/0304-3894(94)00085-U |
[12] | US EPA. Overview of thermal desorption technology[R]. Port Hueneme: US EPA, 1998. |
[13] | 高国龙, 蒋建国, 李梦露. 有机物污染土壤热脱附技术研究与应用[J]. 环境工程, 2012, 30(1): 128-131. |
[14] | 何茂金, 方基垒, 张树立, 等. 热脱附设备国产化研制分析[J]. 石油化工安全环保技术, 2018(4): 26-27. doi: 10.3969/j.issn.1673-8659.2018.04.009 |
[15] | US EPA. Superfund remedy report[R]. Washington D C: Office of Land and Emergency Management, 2017. |
[16] | GHARIBZADEH F, KALANTARY R R, ESRAFILI A, et al. Desorption kinetics and isotherms of phenanthrene from contaminated soil[J]. Journal of Environmental Health Science and Engineering, 2019, 17(1): 171-181. doi: 10.1007/s40201-019-00338-1 |
[17] | BONNARD M, DEVIN S, LEVVAL C, et al. The influence of thermal desorption on genotoxicity of multipolluted soil[J]. Ecotoxicology Environmental Safety, 2010, 73(5): 955-960. doi: 10.1016/j.ecoenv.2010.02.023 |
[18] | LEE W J, SHIH S I, CHANG C Y, et al. Thermal treatment of polychlorinated dibenzo-p-dioxins and dibenzofurans from contaminated soils[J]. Journal of Hazardous Materials, 2008, 160(1): 220-227. doi: 10.1016/j.jhazmat.2008.02.113 |
[19] | ALLAH Z A, WHITEHEAD J C, MARTIN P. Remediation of dichloromethane (CH2Cl2) using non-thermal, atmospheric pressure plasma generated in a packed-bed reactor[J]. Environmental Science & Technology, 2013, 48(1): 558-565. |
[20] | BUCALA J. Effect of temperature on the release of hexadecane from soil by thermal treatment[J]. Journal of Hazardous Materials, 2007, 143(1): 455-461. |
[21] | LEE J K, PARK D, KIM B U, et al. Remediation of petroleum-contaminated soils by fluidized thermal desorption[J]. Waste Management, 1998, 18(6/7/8): 503-507. |
[22] | JONES D A, LELVVELD T P, Mavrofidis S D, et al. Microwave heating applications in environmental engineering: A review[J]. Resources Conservation & Recycling, 2002, 34(2): 75-90. |
[23] | 骆永明. 中国土壤污染与修复研究二十年[M]. 北京: 科学出版社, 2017. |
[24] | 高梦雯. 高浓度有机污染土壤处理技术研究进展[J]. 环境与发展, 2019, 31(3): 31-32. |
[25] | 高艳菲. 六六六和滴滴涕污染场地土壤的修复[D]. 南京: 南京农业大学, 2011. |
[26] | 刘新培. 热脱附技术在有机磷农药污染土壤修复过程中的应用研究[J]. 天津化工, 2017(1): 57-60. doi: 10.3969/j.issn.1008-1267.2017.01.019 |
[27] | 门晓晔. 有机磷农药污染土壤风险评估及热脱附修复研究[D]. 天津: 天津科技大学, 2016. |
[28] | 王瑛, 李扬, 黄启飞, 等. 温度和停留时间对DDT污染土壤热脱附效果的影响[J]. 环境工程, 2012, 30(1): 116-120. |
[29] | 李晓东, 伍斌, 许端平, 等. 热脱附尾气中DDTs在模拟水泥窑中的去除效果[J]. 安全与环境学报, 2017, 17(6): 2393-2397. |
[30] | 白四红. 高浓度多氯联苯污染土壤热脱附特性实验研究[D]. 杭州: 浙江大学, 2014. |
[31] | 李雪倩, 李晓东, 严密, 等. 多氯联苯污染土壤热脱附预处理过程干化及排放特性研究[J]. 环境科学学报, 2012, 32(2): 394-401. |
[32] | 何依琳, 张倩, 许端平, 等. FeCl3强化汞污染土壤热解吸修复[J]. 环境科学研究, 2014, 27(9): 1074-1079. |
[33] | 杨勤, 王兴润, 孟昭福, 等. 热脱附处理技术对汞污染土壤的影响[J]. 西北农业学报, 2013, 22(6): 203-208. doi: 10.7606/j.issn.1004-1389.2013.06.036 |
[34] | 毕廷涛, 姬成岗, 王金华, 等. 氯碱行业含汞盐泥热脱附过程反应特征[J]. 无机盐工业, 2019, 51(4): 63-66. |
[35] | 勾立争, 刘长波, 刘诗诚, 等. 热脱附法修复多环芳烃和汞复合污染土壤实验研究[J]. 环境工程, 2018, 36(2): 184-187. doi: 10.3969/j.issn.1673-1379.2018.02.014 |
[36] | 王瑛, 李扬, 黄启飞, 等. 污染物浓度与土壤粒径对热脱附修复DDTs污染土壤的影响[J]. 环境科学研究, 2011, 24(9): 1016-1022. |
[37] | 许端平, 何依琳, 庄相宁, 等. 热解吸修复污染土壤过程中DDTs的去除动力学[J]. 环境科学研究, 2013, 26(2): 202-207. |
[38] | LIU J, CHEN T, QI Z, et al. Thermal desorption of PCBs from contaminated soil using nano zerovalent iron[J]. Environmental Science and Pollution Research, 2014, 21(22): 12739-12746. doi: 10.1007/s11356-014-3226-8 |
[39] | HU X, ZHU J, DING Q. Environmental life-cycle comparisons of two polychlorinated biphenyl remediation technologies: Incineration and base catalyzed decomposition[J]. Journal of Hazardous Materials, 2011, 191(1): 258-268. |
[40] | 王奕文, 张倩, 伍斌, 等. 脉冲电晕放电等离子体去除污染土壤热脱附尾气中的DDTs[J]. 环境科学研究, 2017, 30(6): 974-980. |
[41] | 马福俊, 丛鑫, 张倩, 等. 模拟水泥窑工艺对污染土壤热解吸尾气中六氯苯的去除效果[J]. 环境科学研究, 2015, 28(8): 1311-1316. |
[42] | 朱伊娜, 徐东耀, 伍斌, 等. 低温等离子体降解污染土壤热脱附尾气中DDTs[J]. 环境科学研究, 2018, 31(12): 2140-2145. |
[43] | 徐栋梁, 唐中亚, 郭强. 热脱附技术在北京某钢厂土壤修复工程中的应用[C]//《环境工程》编委会.《环境工程》2018年全国学术年会论文集(下册). 北京, 2018: 4. |
[44] | 郑桂林, 谢湉, 薛天利, 等. 热脱附技术在化工场地六六六污染土壤中的工程应用研究[J]. 广东化工, 2017, 44(11): 222-223. doi: 10.3969/j.issn.1007-1865.2017.11.103 |
[45] | MARIA J, ROCIO MILLAN, FELIX A, et al. Sustainable remediation of mercury contaminated soils by thermal desorption[J]. Environmental Science and Pollution Research, 2016, 23(5): 4898-4907. doi: 10.1007/s11356-015-5688-8 |
[46] | YI Y M, PARK S, MUNSTER C, et al. Changes in ecological properties of petroleum oil-contaminated soil after low-temperature thermal desorption treatment[J]. Water, Air & Soil Pollution, 2016, 227(4): 108. |
[47] | PAPE A, SWITZER C, MCCOSH N, et al. Impacts of thermal and smouldering remediation on plant growth and soil ecology[J]. Geoderma, 2015, 243-244: 1-9. doi: 10.1016/j.geoderma.2014.12.004 |
[48] | GAO Y F, YANG H, ZHAN X H, et al. Scavenging of BHCs and DDTs from soil by thermal desorption and solvent washing[J]. Environmental Science and Pollution Research, 2013, 20(3): 1482-1492. doi: 10.1007/s11356-012-0991-0 |
[49] | THUAN N T, CHANG M B. Investigation of the degradation of pentachlorophenol in sandy soil via low-temperature pyrolysis[J]. Journal of Hazardous Materials, 2012, 229-230: 411-418. doi: 10.1016/j.jhazmat.2012.06.027 |
[50] | 北京建工环境修复股份有限公司. 核心技术设备简介[EB/OL]. [2019-05-20]. http://www.bceer.com/. |
[51] | 北京市保障性住房建设投资中心. 原焦化厂政府储备土地剩余用地污染土治理项目第一标段治理与修复效果评估报告[EB/OL]. [2019-05-20]. http://www.bphc.com.cn/article/view/e2207cecdd0a4fbfabf5a47cad783c6f.html. |
[52] | 首钢环境产业有限公司. 首钢热脱附修复项目介绍[EB/OL]. [2019-05-20]. http://www.sgepi.com/achiveinindustry.aspx?typeId=112. |
[53] | 江苏盖亚环境科技股份有限公司. 异位土壤修复设备简介[EB/OL]. [2019-05-20]. http://www.jsgaiya.cn/index.asp. |
[54] | 杨勇, 黄海, 陈美平, 等. 异位热解吸技术在有机污染土壤修复中的应用和发展[J]. 环境工程技术学报, 2016, 6(6): 559-570. doi: 10.3969/j.issn.1674-991X.2016.06.081 |
[55] | 祁志福. 多氯联苯污染土壤热脱附过程关键影响因素的实验研究及应用[D]. 杭州: 浙江大学, 2014. |
[56] | 南京中船绿洲环保有限公司. 成功案例[EB/OL]. [2019-05-20]. http://www.nj-lzep.com/. |
[57] | 浙江宜可欧环保科技有限公司. 有机污染土壤异位修复处理项目介绍[EB/OL]. [2019-05-20]. http://www.yikeou.com/archives/show/118 |
[58] | 张新建, 王茂仁. 浅谈石油烃污染土壤间接热脱附修复技术[J]. 化工管理, 2018, 485(14): 113-114. doi: 10.3969/j.issn.1008-4800.2018.14.089 |
[59] | 卢鑫. 有机农药污染土壤现状及其修复技术研究综述[J]. 绿色环保建材, 2019(3): 36-39. |
[60] | 马军军, 韩正昌, 申屠灵. 一种有机污染土壤修复方法: 201610669566.2[P]. 2016-10-26. |