2.上海污染控制与生态安全研究院,上海 200092
1.School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China
2.Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
以玉米秸秆为原料,分别在300、500和700 ℃的条件下热解制备生物炭(CS300、CS500、CS700),对其理化性质(pH、比表面积、灰分含量、元素组成)和电化学性质(电子供给能力(EDC)、电子接受能力(EAC)、导电率(EC))进行了表征,并将3种生物炭和导电型石墨分别加入消化反应器进行污泥中温厌氧消化批次实验。结果表明:CS300具有最高的EDC(0.598 mmol·g
);4种碳材料对污泥厌氧消化产甲烷均有促进作用,CS300、石墨、CS500和CS700实验组的甲烷累积总产量比对照组分别提高了42.4%、38.9%、28.9%和11.2%。微生物群落结构分析结果表明:甲烷生成的主要代谢途径是CO
等氢营养型产甲烷古菌的相对丰度,CS300的富集能力最强,石墨的影响作用则不显著。冗余分析结果表明:4种碳材料的电化学性质对厌氧细菌群落组成变化的贡献度为52.7%,对厌氧古菌群落组成变化的贡献度为 64.4%;具有氧化还原活性的生物炭通过反复供给、接受电子大幅增加体系中微生物可用电子数量来提高互养微生物种间电子传递效率;而导电性能优秀的石墨则主要通过促进微生物的直接电子传递来提高甲烷产率。研究为解析具有电化学活性的碳材料对厌氧微生物菌群代谢特征和电子传递的影响规律提供了一定的理论支撑,对提高污泥厌氧消化效率、实现能源高效回收具有重要理论价值和现实意义。
Biochar was prepared by pyrolyzing corn stover biomass at 300, 500 and 700 ℃, respectively, and yielded CS300, CS500 and CS700. Their physicochemical properties including pH, surface area, ash content and elemental composition and electrochemical properties including EDC, EAC, EC were characterized. Then three types of biochar and the conductive graphite were dosed in digestion reactor to conduct the batch tests of mesophilic AD of sludge. The results showed that CS300 had the highest EDC of 0.598 mmol·g
. All the materials could promote AD of sludge. In comparison to the control group, the addition of CS300, Graphite, CS500 or CS700 elevated the cumulative methane production by 42.4%, 38.9%, 28.9% and 11.2%, respectively. Analysis of microbial community indicated that methane was primarily produced via CO
reduction pathway, which is attributed to the syntrophic association between syntrophic anaerobes and hydrogenotrophic methanogens. The addition of biochar raised the relative abundance of
and other hydrogenotrophic methanogens. CS300 had the best performance on enrich these methanogens, while graphite did not make significant contribution. RDA analysis showed that the parameters reflecting the electrochemical properties of carbon-based materials explained 52.7% and 64.4% of the bacterial and archaeal community in the sludge digesters, respectively. Redox-active biochar could sustainably donate and accept electrons over many redox cycles, improve the available electron quantity of microorganism in the system and facilitate electron transfer to CO
reduction, and thereby enhance methanogenesis. Alternatively, graphite could directly transport electrons so that promotes direct interspecies electron transfer (DIET) in syntrophic communities for enhanced methane productivity. It provides theoretical support for the analysis of the influence of conductive carbon materials on the metabolic characteristics and electron transport of anaerobic microbial community. And it has important theoretical and practical value for improving the anaerobic digestion efficiency of sludge and achieving energy efficient recovery significantly.
.
Scanning electron microscopy images of four carbon-based materials
FT-IR spectra of four carbon-based materials
Changes of methane production for different test groups
Methane content in biogas in different test groups
Bacterial community at the Class level in different sludge digesters
Archaeal community at the Genus level in different sludge digesters
各实验组微生物群落结构与生物炭和石墨各项电化学性质的冗余分析
Redundancy analysis (RDA) in the digesters with electrochemical properties of biochar and graphite
[1] | 中华人民共和国生态环境部. 生态环境部公布2018年度《水污染防止行动计划》重点任务实施情况[EB/OL]. [2019-07-23]. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk15/201907/t20190723_712133.html, 2019. |
[2] | YANG G, ZHANG G M, WANG H C. Current state of sludge production, management, treatment and disposal in China[J]. Water Research, 2015, 78: 60-73. doi: 10.1016/j.watres.2015.04.002 |
[3] | MCCARTY P L, BAE J, KIM J. Domestic wastewater treatment as a net energy producer: Can this be achieved?[J]. Environmental Science & Technology, 2011, 45: 7100-7106. |
[4] | SHEN Y W, LINVILLE J L, URGUN-DEMIRTAS M, et al. An overview of biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in the United States: Challenges and opportunities towards energy-neutral WWTPs[J]. Renewable and Sustainable Energy Reviews, 2015, 50: 346-362. doi: 10.1016/j.rser.2015.04.129 |
[5] | MUMME J, SROCKE F, HEEG K, et al. Use of biochars in anaerobic digestion[J]. Bioresource Technology, 2014, 164: 189-197. doi: 10.1016/j.biortech.2014.05.008 |
[6] | WATANABE R, TADA C, BABA Y, et al. Enhancing methane production during the anaerobic digestion of crude glycerol using Japanese cedar charcoal[J]. Bioresource Technology, 2013, 150: 387-392. doi: 10.1016/j.biortech.2013.10.030 |
[7] | LV F, LUO C H, SHAO L M, et al. Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina[J]. Water Research, 2016, 90: 34-43. doi: 10.1016/j.watres.2015.12.029 |
[8] | CHEN S S, ROTARU A, SHRESTHA P M, et al. Promoting interspecies electron transfer with biochar[J]. Scientific Reports, 2014, 4: 5019. |
[9] | ROTARU A, SHRESTHA P M, LIU F, et al. Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri[J]. Applied and Environmental Microbiology, 2014, 80: 4599-4605. doi: 10.1128/AEM.00895-14 |
[10] | LOVLEY D R. Happy together: Microbial communities that hook up to swap electrons[J]. The ISME Journal, 2017, 11: 327-336. |
[11] | LOVLEY D R. Syntrophy goes electric: Direct interspecies electron transfer[J]. Annual Review of Microbiology, 2017, 71: 643-664. doi: 10.1146/annurev-micro-030117-020420 |
[12] | DE BOK F A M, PLUGGE C M, STAMS A J M. Interspecies electron transfer in methanogenic propionate degrading consortia[J]. Water Research, 2004, 38: 1368-1375. doi: 10.1016/j.watres.2003.11.028 |
[13] | MCINERNEY M J, STRUCHTEMEYER C G, SIEBER J S, et al. Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism[J]. Annals of the New York Academy Sciences, 2008, 1125: 58-72. doi: 10.1196/annals.1419.005 |
[14] | STAMS A J M, PLUGGE C M. Electron transfer in syntrophic communities of anaerobic bacteria and archaea[J]. Nature Reviews Microbiology, 2009, 7: 568-577. doi: 10.1038/nrmicro2166 |
[15] | KLVPFEL L, KEILUWEIT M, KLEBER M, et al. Redox properties of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 2014, 48: 5601-5611. |
[16] | SHEN Y W, LINVILLE J L, URGUN-DEMIRTAS M, et al. Producing pipeline-quality biomethane via anaerobic digestion of sludge amended with corn stover biochar with in-situ CO2 removal[J]. Applied Energy, 2015, 158: 300-309. doi: 10.1016/j.apenergy.2015.08.016 |
[17] | SUN T, LEVIN B D A, GUZMAN J J L, et al. Rapid electron transfer by the carbon matrix in natural pyrogenic carbon[J]. Nature Communication, 2017, 8: 14873. doi: 10.1038/ncomms14873 |
[18] | CRUZ VIGGI C, SIMONETTI S, PALMA E, et al. Enhancing methane production from food waste fermentate using biochar: The added value of electrochemical testing in pre-selecting the most effective type of biochar[J]. Biotechnology for Biofuels, 2017, 10: 303. doi: 10.1186/s13068-017-0994-7 |
[19] | KWANG H K, JAE-YOUNG K, TAE-SU C, et al. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida)[J]. Bioresource Technology, 2012, 118: 158-162. doi: 10.1016/j.biortech.2012.04.094 |
[20] | BREWER C E, SCHMIDT-ROHR K, SATRIO J A, et al. Characterization of biochar from fast pyrolysis and gasification systems[J]. Environmental Progress & Sustainable Energy, 2009, 28: 386-396. |
[21] | ZHAO L, CAO X D, MASEK O, et al. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures[J]. Journal of Hazardous Materials, 2013, 256-257: 1-9. doi: 10.1016/j.jhazmat.2013.04.015 |
[22] | LIU W J, JIANG H, YU H Q. Development of biochar-based functional materials: Toward a sustainable platform carbon material[J]. Chemical Reviews, 2015, 115: 12251-12285. doi: 10.1021/acs.chemrev.5b00195 |
[23] | ZHANG C F, KATAYAMA A. Humin as an electron mediator for microbial reductive dehalogenation[J]. Environmental Science & Technology, 2012, 46: 6575-6583. |
[24] | XU Y, LU Y Q, DAI X H, et al. The influence of organic-binding metals on the biogas conversion of sewage sludge[J]. Water Research, 2017, 126: 329-341. doi: 10.1016/j.watres.2017.09.046 |
[25] | WERNER J J, KNIGHTS D, GARCIA M L, et al. Bacterial community structures are unique and resilient in full-scale bioenergy systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108: 4158-4163. doi: 10.1073/pnas.1015676108 |
[26] | RIVIERE D, DESVIGNES V, PELLETIER E, et al. Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge[J]. The ISME Journal, 2009, 3: 700-714. |
[27] | SUNDBERG C, AL-SOUND W A, LARSSOM M, et al. 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters[J]. FEMS Microbiology Ecology, 2013, 85: 612-626. doi: 10.1111/1574-6941.12148 |
[28] | DE VRIEZE J, RAPORT L, ROUME H, et al. The full-scale anaerobic digestion microbiome is represented by specific marker populations[J]. Water Research, 2016, 104: 101-110. doi: 10.1016/j.watres.2016.08.008 |
[29] | ITO T, YOSHIGUCHI K, ARIESYADY H D, et al. Identification of a novel acetate-utilizing bacterium belonging to Synergistes group 4 in anaerobic digester sludge[J]. The ISME Journal, 2011, 5: 1844-1856. |
[30] | ZHAO Z Q, ZHANG Y B, WOODARD T L, et al. Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials[J]. Bioresource Technology, 2015, 191: 140-145. doi: 10.1016/j.biortech.2015.05.007 |
[31] | ZHAO Z Q, ZHANG Y B, HOLMES D E, et al. Potential enhancement of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with biochar in up-flow anaerobic sludge blanket reactors[J]. Bioresource Technology, 2016, 209: 148-156. doi: 10.1016/j.biortech.2016.03.005 |
[32] | ZHAO Z Q, LI Y, QUAN X, et al. Towards engineering application: Potential mechanism for enhancing anaerobic digestion of complex organic waste with different types of conductive materials[J]. Water Research, 2017, 115: 266-277. doi: 10.1016/j.watres.2017.02.067 |
[33] | DANG Y, HOLMES D E, ZHAO Z Q, et al. Enhancing anaerobic digestion of complex organic waste with carbon-based conductive materials[J]. Bioresource Technology, 2016, 220: 516-522. doi: 10.1016/j.biortech.2016.08.114 |
[34] | JING Y H, WAN J J, ANGELIDAKI I, et al. iTRAQ quantitative proteomic analysis reveals the pathways for methanation of propionate facilitated by magnetite[J]. Water Research, 2017, 108: 212-221. doi: 10.1016/j.watres.2016.10.077 |
[35] | WANG T, ZHANG D, DAI L L, et al. Magnetite triggering enhanced direct interspecies electron transfer: A scavenger for the blockage of electron transfer in anaerobic digestion of high-solids sewage sludge[J]. Environmental Science & Technology, 2018, 52: 7160-7169. |
[36] | MAUS I, WIBBERG D, STANTSCHEFF R, et al. Complete genome sequence of the hydrogenotrophic, methanogenic archaeon Methanoculleus bourgensis strain MS2(T): Isolated from a sewage sludge digester[J]. Journal Bacteriology, 2012, 194: 5487-5488. doi: 10.1128/JB.01292-12 |
[37] | ROTARU A, SHRESTHA P M, LIU F H, et al. A new model for electron flow during anaerobic digestion: Direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane[J]. Energy & Environmental Science, 2014, 7: 408-415. |
[38] | CONKLIN A, STENSEL H D, FERGUSON J. Growth kinetics and competition between Methanosarcina and Methanosaeta in mesophilic anaerobic digestion[J]. Water Environment Research, 2006, 78: 486-496. doi: 10.2175/106143006X95393 |
[39] | DE VRIEZE J, HENNEBEL T, BOON N, et al. Methanosarcina: The rediscovered methanogen for heavy duty biomethanation[J]. Bioresource Technology, 2012, 112: 1-9. doi: 10.1016/j.biortech.2012.02.079 |
[40] | SMITH K S, INGRAM-SMITH C. Methanosaeta, the forgotten methanogen[J]. Trends in Microbiology, 2007, 15: 150-155. doi: 10.1016/j.tim.2007.02.002 |
[41] | KARAKASHEV D, BATSTONE D J, TRABLY E, et al. Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of Methanosaetaceae[J]. Applied and Environmental Microbiology, 2006, 72: 5138-5141. doi: 10.1128/AEM.00489-06 |
[42] | KAPPLEER A, WUESTNER M L, RUECKER A, et al. Biochar as an electron shuttle between bacteria and Fe(III) minerals[J]. Environmental Science & Technology Letters, 2014, 1(8): 339-344. |
[43] | SMITH J A, NEVIN K P, LOVLEY D R. Syntrophic growth via quinone-mediated interspecies electron transfer[J]. Frontiers in Microbiology, 2015, 6: 121. |
[44] | WU S, FANG G D, WANG Y J, et al. Redox-active oxygen-containing functional groups in activated carbon facilitate microbial reduction of ferrihydrite[J]. Environmental Science & Technology, 2017, 51: 9709-9717. |
[45] | PREVOTEAU A, RONSSE F, CID I, et al. The electron donating capacity of biochar is dramatically underestimated[J]. Scientific Reports, 2016, 6: 32870. doi: 10.1038/srep32870 |
[46] | YANG Y F, ZHANG Y B, LI Z Y, et al. Adding granular activated carbon into anaerobic sludge digestion to promote methane production and sludge decomposition[J]. Journal of Cleaner Production, 2017, 149: 1101-1108. doi: 10.1016/j.jclepro.2017.02.156 |