3.广东环境保护工程职业学院,佛山 528216
1.School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China
2.School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
3.Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China
为了比较不同提取方法对胞外聚合物(EPS)的提取及其吸附Cd(Ⅱ)的影响,考察了pH、单一物理提取方法和组合方法对脱水污泥中EPS的提取量及其对Cd(Ⅱ)的吸附能力的影响。结果表明:碱性条件在能够提高EPS提取量的同时,也能够提高EPS对Cd(Ⅱ)的吸附能力;不同物理处理方法对EPS的提取效率影响顺序为加热法>超声法>离心法,但其对Cd(Ⅱ)的吸附能力影响顺序为超声法>离心法>加热法;组合物理方法虽然较单一方法的EPS提取效率要高,但其提取EPS吸附Cd(Ⅱ)的能力较单一方法弱。以上结果可为EPS重金属吸附剂的有效提取和工业化应用提供参考。
To compare the effects of extraction methods on Cd(Ⅱ) adsorption by extracellular polymers(EPS), the EPS extraction amount and its adsorption capacity of Cd(Ⅱ) corresponding to different pH and physical extraction methods were studied. The results showed that the alkaline condition was beneficial to increase the EPS extraction amount and its Cd(Ⅱ) adsorption capacity accordingly. The EPS extraction efficiency by different physical treatment methods followed the sequence of heating method>ultrasonic method>centrifugal method, while the adsorption capacity of Cd(Ⅱ) followed the sequence of ultrasonic method>centrifugal method>heating method. Although the combined physical method was more efficient than the single method in EPS extraction, its Cd(Ⅱ) adsorption capacity was lower than single method. The result of this study can provide some theoretical guidance for the extracted EPS as heavy metal adsorbent.
.
Effect of pH on EPS extraction and Cd(Ⅱ) adsorption efficiency
Effect of physical treatment methods on EPS extraction and Cd(Ⅱ) adsorption efficiency
Effect of combine physical treatment methods on EPS extraction and Cd(Ⅱ) adsorption efficiency
[1] | 吴桂荣, 储昭瑞, 荣宏伟, 等. 不同方法提取活性污泥胞外聚合物的特性分析[J]. 广州大学学报(自然科学版), 2017, 16(6): 77-83. |
[2] | 杨飘, 康得军, 谢丹瑜, 等. 不同方法组合对活性污泥胞外聚合物的提取[J]. 净水技术, 2016, 35(6): 88-92. |
[3] | HA J G, LABERT A, SPORMANN A M, et al. Role of extracellular polymeric substances in metal ion complexation on shewanella oneidensis: Batch uptake, thermodynamic modeling, ATR-FTIR, and EXAFS study[J]. Geochimica et Cosmochimica Acta, 2010, 74(1): 1-15. doi: 10.1016/j.gca.2009.06.031 |
[4] | LIU W, ZHANG J S, JIN Y J, et al. Adsorption of Pb(II), Cd(II) and Zn(II) by extracellular polymeric substances extracted from aerobic granular sludge: Efficiency of protein[J]. Journal of Environmental Chemical Engineering, 2015, 3(2): 1223-1232. doi: 10.1016/j.jece.2015.04.009 |
[5] | JIANG J Q, ZHAO Q L, WEI L L, et al. Extracellular biological organic matters in microbial fuel cell using sewage sludge as fuel[J]. Water Research, 2010, 44(7): 2163-2170. doi: 10.1016/j.watres.2009.12.033 |
[6] | MIAO L Z, WANG C, HOU J, et al. Response of wastewater biofilm to CuO nanoparticle exposure in terms of extracellular polymeric substances and microbial community structure[J]. Science of the Total Environment, 2017, 579: 588-597. doi: 10.1016/j.scitotenv.2016.11.056 |
[7] | SUN X F, WANG S G, ZHANG X M, et al. Spectroscopic study of Zn2+ and Co2+ binding to extracellular polymeric substances(EPS) from aerobic granules[J]. Journal of Colloid and Interface Science, 2009, 335(1): 11-17. doi: 10.1016/j.jcis.2009.03.088 |
[8] | 郑蕾, 丁爱中, 王金生, 等. 不同组成活性污泥胞外聚合物吸附Cd2+、Zn2+特征[J]. 环境科学, 2008, 29(10): 2850-2855. doi: 10.3321/j.issn:0250-3301.2008.10.029 |
[9] | HU J L, HE X W, WANG C R, et al. Cadmium adsorption characteristic of alkali modified sewage sludge[J]. Bioresource Technology, 2012, 121: 25-30. doi: 10.1016/j.biortech.2012.06.100 |
[10] | SHENG G P, YU H Q, YU Z. Extraction of extracellular polymeric substances from the photosynthetic bacterium Rhodopseudomonas acidophila[J]. Applied Microbiology and Biotechnology, 2005, 67(1): 125-130. doi: 10.1007/s00253-004-1704-5 |
[11] | 董明, 宋卫锋, 程亚杰. 苯胺黑药高效降解菌(Bacillus vallismortis)胞外聚合物去除重金属的研究[J]. 环境科学学报, 2016, 36(12): 4367-4375. |
[12] | D'ABZAC P, BORDAS F, VAN HULLEBUSCH E, et al. Effects of extraction procedures on metal binding properties of extracellular polymeric substances (EPS) from anaerobic granular sludges[J]. Colloids and Surfaces B: Biointerfaces, 2010, 80(2): 161-168. doi: 10.1016/j.colsurfb.2010.05.043 |
[13] | LIANG Z W, LI W H, YANG S Y, et al. Extraction and structural characteristics of extracellular polymeric substances (EPS), pellets in autotrophic nitrifying biofilm and activated sludge[J]. Chemosphere, 2010, 81(5): 626-632. doi: 10.1016/j.chemosphere.2010.03.043 |
[14] | LU X Q, ZHEN G Y, ESTRADA A L, et al. Operation performance and granule characterization of upflow anaerobic sludge blanket (UASB) reactor treating wastewater with starch as the sole carbon source[J]. Bioresource Technology, 2015, 180: 264-273. doi: 10.1016/j.biortech.2015.01.010 |
[15] | D'ABZAC P, BORDAS F, VAN HULLEBUSCH E, et al. Extraction of extracellular polymeric substances (EPS) from anaerobic granular sludges: comparison of chemical and physical extraction protocols[J]. Applied Microbiology and Biotechnology, 2010, 85(5): 1589-1599. doi: 10.1007/s00253-009-2288-x |
[16] | LI N, WEI D, WANG S T, et al. Comparative study of the role of extracellular polymeric substances in biosorption of Ni(II) onto aerobic/anaerobic granular sludge[J]. Journal of Colloid and Interface Science, 2017, 490: 754-761. doi: 10.1016/j.jcis.2016.12.006 |
[17] | SUN M, LI W W, YU H Q, et al. A novel integrated approach to quantitatively evaluate the efficiency of extracellular polymeric substances(EPS) extraction process[J]. Applied Microbiology and Biotechnology, 2012, 96(6): 1577-1585. doi: 10.1007/s00253-012-4478-1 |
[18] | CAUDAN C, FILALI A, LEFEBVRE D, et al. Extracellular polymeric substances(EPS) from aerobic granular sludges: Extraction, fractionation, and anionic properties[J]. Applied Biochemistry and Biotechnology, 2012, 166(7): 1685-1702. doi: 10.1007/s12010-012-9569-z |
[19] | LIAO B Q, ALLEN D G, DROPPO I G, et al. Surface properties of sludge and their role in bioflocculation and settleability[J]. Water Research, 2001, 35(2): 339-350. doi: 10.1016/S0043-1354(00)00277-3 |
[20] | 邢奕, 王志强, 洪晨, 等. 不同pH值下胞外聚合物对污泥脱水性能及束缚水含量的影响[J]. 工程科学学报, 2015, 37(10): 1387-1395. |
[21] | HWANG J, ZHANG L, SEO S, et al. Protein recovery from excess sludge for its use as animal feed[J]. Bioresource Technology, 2008, 99(18): 8949-8954. doi: 10.1016/j.biortech.2008.05.001 |
[22] | SU W, TANG B, FU F L, et al. A new insight into resource recovery of excess sewage sludge: Feasibility of extracting mixed amino acids as an environment-friendly corrosion inhibitor for industrial pickling[J]. Journal of Hazardous Materials, 2014, 279: 38-45. doi: 10.1016/j.jhazmat.2014.06.053 |
[23] | 宋小莉. 基于蛋白质回收的剩余污泥热碱水解技术研究[D]. 无锡: 江南大学, 2017. |
[24] | 刘翔, 黄映恩, 刘燕, 等. 活性污泥和生物膜的胞外聚合物提取方法比较[J]. 复旦学报(自然科学版), 2011, 50(5): 556-562. |
[25] | MIAO L Z, WANG C, HOU J, et al. Contributions of different fractions of extracellular polymeric substances from waste-activated sludge to Cu(II) biosorption[J]. Desalination and Water Treatment, 2015, 57(45): 21405-21416. |