黄廷林1,
胡瑞柱1,
张瑞峰1,
智奥帆1
1.西安建筑科技大学环境与市政工程学院,西安 710055
基金项目: 国家重点研发计划课题(2016YFC0400706)
Simultaneous removal of iron, manganese and hardness by pellet fluidized bed reactor in pilot-scale experiment
TANG Zhangcheng1,,HUANG Tinglin1,
HU Ruizhu1,
ZHANG Ruifeng1,
ZHI Aofan1
1.School of Environment and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:为了实现水中的铁、锰及硬度的同步去除,利用结晶造粒流化床,在中试规模条件下,考察了药剂投加量、晶种填充高度、水力负荷、连续运行时间等因素对出水效果的影响。结果表明,在进水硬度、铁和锰平均浓度分别为300、0.90和1.90 mg·L?1条件下,当水力负荷为13 m·h?1,晶种填充高度为50 cm,NaOH投加量为100 mg·L?1时,出水水质达标,大部分污染物在流化床底部被去除,出水效果随着运行时间的推移有所增强,硬度、铁及锰的去除率分别为59%、70.6%和96.7%,出水pH为9.6;此外,水中硬度的含量较高时,流化床对锰的去除难度加大。通过对长期运行后晶种的结构变化进行SEM﹑EDS和XPS表征,发现流化床运行过程中,结晶颗粒逐渐长大,表面形成致密的结晶产物,其主要成分为CaCO3、FeOOH、Fe3O4、Mn3O4和MnO2等构成的复合物。研究结果为水中铁﹑锰及硬度的同步去除提供可借鉴的理论参考,具有一定的实践指导意义。
关键词: 结晶造粒流化床/
软化/
铁/
锰/
同步去除
Abstract:In order to achieve simultaneous removal of iron, manganese and hardness from water, the effects of operational conditions, including chemical reagent dosage, seed packing height, hydraulic loading and continuous running time, etc., on the performance of a pilot-scale pellet fluidized bed reactor were investigated. The results showed that the effluent water quality could meet the related standards and became better with the running extension at the hardness of 300 mg·L?1, average iron concentration of 0.90 mg·L?1 and average manganese concentration of 1.90 mg·L?1 in influent water, as well as the hydraulic loading rate of 13 m·h?1, calcium carbonate crystal seed packing height of 50 cm and NaOH dosage of 100 mg·L?1. Most of the contaminants were removed at the bottom of the pellet fluidized bed, the removal rates of hardness, iron and manganese were up to 59%, 70.6% and 96.7%, respectively, and the pH of effluent water was 9.6. In addition, the manganese removal by fluidized bed became difficult with the increase of influent hardness. According to the SEM, EDS and XPS detection for the seeds after long-term operation of reactor, it was found that the seeds gradually grew up during the running, which was covered by a compact crystallized product layer of a mixture of CaCO3, FeOOH, Fe3O4, Mn3O4 and MnO2. The results can provide a theoretical reference for the simultaneous removal of iron, manganese and hardness in water and guide the corresponding removal practice to some extent.
Key words:pellet fluidized reactor/
softening/
iron/
manganese/
simultaneous removal.
[1] | LEE S H, LEE S H, LEE C H, et al.Riverbank filtration: Removal of iron, manganese and hardness[J].Journal of Water and Environment Technology,2003,1(2):133-140 10.2965/jwet.2003.133 |
[2] | TAHERNEZHAD Z, YOUSEFI Z, MOUSAVINASAB N.A survey on fluoride, nitrate, iron, manganese and total hardness in drinking water of Fereydoonkenar city during 2008-2013[J].International Journal of Environmental Health Research,2016,4(2):102-112 10.22102/jaehr.2016.40226 |
[3] | 华家, 卢金锁, 闫涛. 酸碱平衡法对地下水暂时硬度的去除试验研究[J]. 中国给水排水,2016,32(17):39-42 |
[4] | 陈涛. 用石灰软化-絮凝法处理地下水水源硬度试验研究[D]. 武汉: 华中科技大学,2012 |
[5] | SHARRETT A R.Water hardness and cardiovascular disease[J].Circulation,1981,63(1):247-250 |
[6] | 李冬, 曾辉平,张杰. 饮用水除铁除锰科学技术进展[J]. 给水排水,2011,37(6):7-13 |
[7] | SCHOLZ M.Wetlands for Water Pollution Control[M]. 2nd Edition.Holland: Elsevier Science,2016:107-109 |
[8] | LI J, KONER S, GERMAN M, et al.Aluminum-cycle ion exchange process for hardness removal: A new approach for sustainable softening[J].Environmental Science & Technology,2016,50(21):11943-11950 10.1021/acs.est.6b03021 |
[9] | 王晓丹, 王志军, 尚庆海,等. 高硬度含铁含锰地下水的处理[J]. 给水排水,2015,51(4):17-19 |
[10] | 李继震, 于文举, 王志军,等. 曝气-石灰碱化法除铁除锰、降低水的硬度和溶解性总固体含量的研究[J]. 给水排水,2000,26(4):12-13 |
[11] | ALEXANDRATOS S D.Ion-exchange resins: A retrospective from industrial and engineering chemistry research[J].Industrial & Engineering Chemistry Research,2009,48(1):388-398 10.1021/ie801242v |
[12] | 陈坚, 王凯军. 诱导结晶工艺处理重金属废水进展[C]//中国环境科学学会. 2013年中国环境科学学会学术年会论文集. 昆明,2013:5142-5146 |
[13] | ALDACO R, GAREA A, IRABIEN A.Particle growth kinetics of calcium fluoride in a fluidized bed reactor[J].Chemical Engineering Science,2007,62(11):2958-2966 10.1016/j.ces.2007.02.045 |
[14] | MAHVI A H, SHAFIEE F, NADDAFI K.Feasibility study of crystallization process for water softening in a pellet reactor[J].International Journal of Environmental Science & Technology,2005,1(4):301-304 |
[15] | 熊娅, 王凯军, 阎中. 诱导结晶工艺中诱晶载体的选择与改性[J]. 环境工程学报,2013,7(1):42-46 |
[16] | 胡瑞柱, 黄廷林, 文刚,等. 造粒流化床反应器去除地下水中硬度试验研究[J]. 中国给水排水,2016,32(21):39-44 |
[17] | SONG Y, WEIDLER P G, BERG U, et al.Calcite-seeded crystallization of calcium phosphate for phosphorus recovery[J].Chemosphere,2006,63(2):236-243 10.1016/j.chemosphere.2005.08.021 |
[18] | 黄廷林, 孙田, 邓林煜. 诱导结晶法去除地下水中氟离子[J]. 环境工程学报,2014,8(1):1-5 |
[19] | ALDACO R, AURORA GAREA A, IRABIEN A.Fluoride recovery in a fluidized bed: Crystallization of calcium fluoride on silica sand[J].Industrial & Engineering Chemistry Research,2006,45(2):796-802 10.1021/ie050950z |
[20] | 熊娅, 阎中, 张国臣, 等. 成核方式对诱导结晶工艺处理含铜废水的影响[J]. 环境科学,2011,32(10):2961-2965 |
[21] | 阎中, 熊娅, 王凯军,等. 诱导结晶工艺处理含铜废水[J]. 化工学报,2009,60(10):2603-2608 |
[22] | 国家环境保护总局. 水和废水监测分析方法[M]. 4版.北京: 中国环境科学出版社,2002 |
[23] | 乔庆云. 石灰软化地下水处理工程应用研究[J]. 扬州大学学报(自然科学版),2003,6(4):74-77 |
[24] | MOUCHET P.From conventional to biological removal of iron and manganese in France[J].Journal American Water Works Association,1992,84(4):158-167 10.1002/j.1551-8833.1992.tb07342.x |
[25] | KNOCKE W R, OCCIANO S C, HUNGATE R.Removal of soluble manganese by oxide-coated filter media: Sorption rate and removal mechanism issues[J].Journal American Water Works Association,1991,83(8):64-69 10.1002/j.1551-8833.1991.tb07201.x |
[26] | BRUINS J H, PETRUSEVSKI B, SLOKAR Y M, et al.Manganese removal from groundwater: Characterization of filter media coating[J].Desalination & Water Treatment,2015,55(7):1-13 10.1080/19443994.2014.927802 |
[27] | 陈坚, 袁鹏. 碳酸盐体系中pH对Cu2+诱导结晶过程的影响[J]. 环境科学研究,2015,28(1):96-102 |
[28] | LEE C I, YANG W F, HSIEH C I.Removal of Cu(II) from aqueous solution in a fluidized-bed reactor[J].Chemosphere,2004,57(9):1173-1180 10.1016/j.chemosphere.2004.08.028 |
[29] | 李佳凤, 吕锡武, 徐微,等. 诱导结晶反应器回收富磷上清液中磷的研究[J]. 中国给水排水,2010,26(1):13-15 |
[30] | GHEN Y F, FAN R, AN D F, et al.Water softening by induced crystallization in fluidized bed[J].Journal of Environmental Sciences,2016,50(12):109-116 10.1016/j.jes.2016.08.014 |
[31] | 宋伟. 诱导结晶组合工艺处理含铁重金属废水研究[D].哈尔滨: 哈尔滨工业大学,2016 |
Turn off MathJax -->
点击查看大图
计量
文章访问数:1170
HTML全文浏览数:1030
PDF下载数:92
施引文献:0
出版历程
刊出日期:2018-11-12
-->
结晶造粒流化床同步去除水中铁、锰及硬度的中试实验
唐章程1,,黄廷林1,
胡瑞柱1,
张瑞峰1,
智奥帆1
1.西安建筑科技大学环境与市政工程学院,西安 710055
基金项目: 国家重点研发计划课题(2016YFC0400706)
关键词: 结晶造粒流化床/
软化/
铁/
锰/
同步去除
摘要:为了实现水中的铁、锰及硬度的同步去除,利用结晶造粒流化床,在中试规模条件下,考察了药剂投加量、晶种填充高度、水力负荷、连续运行时间等因素对出水效果的影响。结果表明,在进水硬度、铁和锰平均浓度分别为300、0.90和1.90 mg·L?1条件下,当水力负荷为13 m·h?1,晶种填充高度为50 cm,NaOH投加量为100 mg·L?1时,出水水质达标,大部分污染物在流化床底部被去除,出水效果随着运行时间的推移有所增强,硬度、铁及锰的去除率分别为59%、70.6%和96.7%,出水pH为9.6;此外,水中硬度的含量较高时,流化床对锰的去除难度加大。通过对长期运行后晶种的结构变化进行SEM﹑EDS和XPS表征,发现流化床运行过程中,结晶颗粒逐渐长大,表面形成致密的结晶产物,其主要成分为CaCO3、FeOOH、Fe3O4、Mn3O4和MnO2等构成的复合物。研究结果为水中铁﹑锰及硬度的同步去除提供可借鉴的理论参考,具有一定的实践指导意义。
English Abstract
Simultaneous removal of iron, manganese and hardness by pellet fluidized bed reactor in pilot-scale experiment
TANG Zhangcheng1,,HUANG Tinglin1,
HU Ruizhu1,
ZHANG Ruifeng1,
ZHI Aofan1
1.School of Environment and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
Keywords: pellet fluidized reactor/
softening/
iron/
manganese/
simultaneous removal
Abstract:In order to achieve simultaneous removal of iron, manganese and hardness from water, the effects of operational conditions, including chemical reagent dosage, seed packing height, hydraulic loading and continuous running time, etc., on the performance of a pilot-scale pellet fluidized bed reactor were investigated. The results showed that the effluent water quality could meet the related standards and became better with the running extension at the hardness of 300 mg·L?1, average iron concentration of 0.90 mg·L?1 and average manganese concentration of 1.90 mg·L?1 in influent water, as well as the hydraulic loading rate of 13 m·h?1, calcium carbonate crystal seed packing height of 50 cm and NaOH dosage of 100 mg·L?1. Most of the contaminants were removed at the bottom of the pellet fluidized bed, the removal rates of hardness, iron and manganese were up to 59%, 70.6% and 96.7%, respectively, and the pH of effluent water was 9.6. In addition, the manganese removal by fluidized bed became difficult with the increase of influent hardness. According to the SEM, EDS and XPS detection for the seeds after long-term operation of reactor, it was found that the seeds gradually grew up during the running, which was covered by a compact crystallized product layer of a mixture of CaCO3, FeOOH, Fe3O4, Mn3O4 and MnO2. The results can provide a theoretical reference for the simultaneous removal of iron, manganese and hardness in water and guide the corresponding removal practice to some extent.