杨永哲1,
张雷2,
方进宾1,
程果1
1.西安建筑科技大学环境与市政工程学院,西安 710055
2.铜川市污水处理厂,铜川 727000
基金项目: 陕西省重点科技创新团队计划(2017KCT-19-01)
高等学校博士学科点专项科研基金(20116120110008)
Performance of MTF-CWs process in enhanced nitrogen removal from excess sludge anaerobic digester liquids
SU Guangxi1,,YANG Yongzhe1,
ZHANG Lei2,
FANG Jinbin1,
CHENG Guo1
1.School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2.Tongchuan Municipal Wastewater Treatment Plant, Tongchuan 727000, China
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:采用多级潮汐流人工湿地(multi-stage tidal flow constructed wetlands, MTF-CWs)处理城市污水处理厂剩余污泥厌氧消化液(excess sludge anaerobic digester liquids, ES-ADL),以垂直潮汐流的运行方式强化硝化,并根据进水NH4+-N和TN浓度分为2种不同工况。实验结果表明:在进水COD、NH4+-N和TN浓度分别为(293.68±9.62)、(845.70±11.53)和(847.00±11.47)mg·L-1的条件下(工况1),出水COD、NH4+-N和TN浓度分别为(84.47±8.10)、(8.81±1.74)和(351.50±7.78)mg·L-1,COD、NH4+-N和TN的平均去除率分别为72.45%、98.93%和56.48%;在进水COD、NH4+-N和TN浓度分别为(413.31±7.47)、(1 023.85±8.32)和(1 025.78±8.31)mg·L-1的条件下(工况2),出水COD、NH4+-N和TN浓度分别为(51.60±6.05)、(9.58±3.13)和(359.92±7.68)mg·L-1。COD、NH4+-N和TN的平均去除率分别为87.34%、99.05%和64.68%。在上述2种工况条件下,可将城市污水处理厂ES-ADL回流引起的氮循环累积量分别降低58.50%和62.19%。溶解氧消耗计算结果表明:MTF-CWs并没有提供NH4+-N的氧化(全程硝化或短程硝化过程)所需要的溶解氧;氮平衡计算结果表明:2种工况条件下通过非传统硝化-反硝化途径(如厌氧氨氧化)去除的总氮负荷分别占据总氮去除负荷的86.30%和82.53%。采用Miseq高通量测序技术进行菌群分析,结果表明:在反硝化脱氮贡献最大的人工湿地单元存在大量的厌氧氨氧化细菌Candidatus Kuenenia,且其占比随着取样深度(0.05~0.20 m)增加而增加(其丰度由5.08%增加到13.18%),表明MTF-CWs处理ES-ADL时存在厌氧氨氧化途径。
关键词: 人工湿地/
剩余污泥厌氧消化液/
硝化/
自养反硝化/
高通量测序
Abstract:Multi-stage tidal flow constructed wetlands(MTF-CWs) was employed to treat the excess sludge anaerobic digesting liquids(ES-ADL) in a wastewater treatment plant, which was conducted under vertical tidal-flow mode to enhance nitrification, and two operating cases were set by the influent concentration of NH4+-N and TN. In operation case 1, when the influent concentration of COD, NH4+-N and TN was (293.68±9.62), (845.70±11.53) and (847.00±11.47)mg·L-1, the effluent concentration of COD, NH4+-N and TN was (84.47±8.10), (8.81±1.74) and (351.50±7.78)mg·L-1, and the corresponding average removal efficiency of COD, NH4+-N and TN reached 72.45%, 98.93% and 56.48%, respectively. In operational case 2, when the influent concentration of COD, NH4+-N and TN was (413.31±7.47), (1 023.85±8.32) and (1 025.78±8.31)mg·L-1, the effluent concentration of COD, NH4+-N and TN was (51.60±6.05), (9.58±3.13) and (359.92±7.68)mg·L-1, and the corresponding average removal efficiency of COD, NH4+-N and TN reached 87.34%, 99.50% and 64.68%. Under these two cases, MTF-CWs decreased 58.50% and 62.19% nitrogen accumulation caused by ES-ADL recycling, respectively. The calculation results of consumption of oxygen indicated that the removal of NH4+-N did not use up the demand dissolved oxygen of whole nitrification or shortcut nitrification. The calculation results of carbon balance indicated that 86.30% and 82.53% nitrogen loads, respectively, were removed by other nitrification-denitrification pathways under two operating cases. Miseq high-throughput sequencing was employed to analyze the microbial communities, large quantities of anaerobic ammonium oxidation bacteria Candidatus Kuenenia were found in the wetland unit which contributed most in denitrification, the ratio of Candidatus Kuenenia increased as the depth of sampling increased (5.08% to 13.18%), which substantiated the existence of anaerobic ammonium oxidation pathways during treating excess sludge digester liquids with application of MTF-CWs.
Key words:constructed wetlands/
excess sludge digester liquids/
nitrification/
denitrification/
high-throughput sequencing.
[1] | HU Y, HE F, MA L, et al.Microbial nitrogen removal pathways in integrated vertical-flow constructed wetland systems[J].Bioresour Technology,2016,207:339-345 10.1016/j.biortech.2016.01.106 |
[2] | FUX C, BOEHLER M, HUBER P, et al.Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant[J].Journal of Biotechnology,2002,99(3):295-306 10.1016/S0168-1656(02)00220-1 |
[3] | AHN Y H, CHOI H C.Autotrophic nitrogen removal from sludge digester liquids in upflow sludge bed reactor with external aeration[J].Process Biochemistry,2006,41(9):1945-1950 10.1016/j.procbio.2006.04.006 |
[4] | CHEN H, LIU S, YANG F, et al.The development of simultaneous partial nitrification, anammox and denitrification (SNAD) process in a single reactor for nitrogen removal[J].Bioresource technology,2009,100(4):1548-1554 10.1016/j.biortech.2008.09.003 |
[5] | KICAISI A K.The potential for constructed wetlands for wastewater treatment and reuse in developing countries: A review[J].Ecological Engineering,2001,16(4):545-560 10.1016/S0925-8574(00)00113-0 |
[6] | REDDY K R, D'ANGELO E M.Biogeochemical indicators to evaluate pollutant removal efficiency in constructed wetlands[J].Water Science and Technology,1997,35(5):1-10 10.1016/S0273-1223(97)00046-2 |
[7] | 孙文杰,佘宗莲,关艳艳,等. 垂直流人工湿地净化污水的研究进展[J]. 安全与环境工程,2011,18(1):25-28 10.3969/j.issn.1671-1556.2011.01.007 |
[8] | BRIX H.Do macrophytes play a role in constructed treatment wetlands?[J].Water Science and Technology,1997,35(5):11-17 10.1016/S0273-1223(97)00047-4 |
[9] | SUN G, GRAY K R, BIDDLESTONE A J, et al.Treatment of agricultural wastewater in a combined tidal flow-downflow reed bed system[J].Water Science and Technology,1999,40(3):139-146 10.1016/S0273-1223(99)00457-6 |
[10] | SOARES M I M.Biological denitrification of groundwater[J].Water Air & Soil Pollution,2000,123(1/2/3/4):183-193 |
[11] | CYDZIKKWIATKOWSKA A, ZIELI?SKA M, BERNAT K, et al.Treatment of high-ammonium anaerobic digester supernatant by aerobic granular sludge and ultrafiltration processes[J].Chemosphere,2013,90(8):2208-2215 10.1016/j.chemosphere.2012.09.072 |
[12] | DOSTA J, GALí A, BENABDALLAH E T, et al.Operation and model description of a sequencing batch reactor treating reject water for biological nitrogen removal via nitrite[J].Bioresource Technology,2007,98(11):2065-2075 10.1016/j.biortech.2006.04.033 |
[13] | 赵联芳,朱伟,赵建. 人工湿地处理低碳氮比污染河水时的脱氮机理[J]. 环境科学学报,2006,26(11):1821-1827 10.3321/j.issn:0253-2468.2006.11.012 |
[14] | 赵立,吴雷,杨永哲. 多级潮汐流人工湿地对污泥厌氧消化液中氨氮及有机物的去除特征[J]. 环境工程学报, 2016,10(7):3687-3693 10.12030/j.cjee.201501218 |
[15] | 国家环境保护总局. 水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002 |
[16] | BRIX H.Gas exchange through the soil-atmosphere interphase and through dead culms of phragmites australis in a constructed reed bed receiving domestic sewage[J].Water Research,1990,24(2):259-266 10.1016/0043-1354(90)90112-J |
[17] | VáZQUEZ M A, VARGA D D L, PLANA R, et al.Vertical flow constructed wetland treating high strength wastewater from swine slurry composting[J].Ecological Engineering,2013,50:37-43 10.1016/j.ecoleng.2012.06.038 |
[18] | PELISSARI C, SEZERINO P H, DECEZARO S T, et al.Nitrogen transformation in horizontal and vertical flow constructed wetlands applied for dairy cattle wastewater treatment in southern Brazil[J].Ecological Engineering,2014,73:307-310 10.1016/j.ecoleng.2014.09.085 |
[19] | HEROUVIM E, AKRATOS C S, TEKERLEKOPOULOU A, et al.Treatment of olive mill wastewater in pilot-scale vertical flow constructed wetlands[J].Ecological Engineering,2011,37(6):931-939 10.1016/j.ecoleng.2011.01.018 |
[20] | WU S, ZHANG D, AUSTIN D, et al.Evaluation of a lab-scale tidal flow constructed wetland performance: Oxygen transfer capacity, organic matter and ammonium removal[J].Ecological Engineering,2011,37(11):1789-1795 10.1016/j.ecoleng.2011.06.026 |
[21] | ROMAN, R V, GAVRILESCU M, et al.Oxygen transfer efficiency in the biosynthesis of antibiotics in bioreactors with a modified RUSHTON turbine agitator [J].Acta Biotechnologica,1994,14(2):181-192 10.1002/abio.370140212 |
[22] | LOOSDRECHT C M V M, SALEM S.Biological treatment of sludge digester liquids[J].Water Science & Technology,2006,53(12):11-20 10.2166/wst.2006.401 |
[23] | 张燕,周巧红,徐栋,等. 不同C/N下人工湿地的脱氮效果及其强化措施[J]. 环境工程学报,2013,7(11):4246-4250 |
[24] | LIN Y F, JING S R, WANG T W, et al.Effects of macrophytes and external carbon sources on nitrate removal from groundwater in constructed wetlands[J].Environmental Pollution,2002,119(3):413-420 10.1016/S0269-7491(01)00299-8 |
[25] | WANG L, LI T.Anaerobic ammonium oxidation in constructed wetlands with bio-contact oxidation as pretreatment[J].Ecological Engineering,2011,37(8):1225-1230 10.1016/j.ecoleng.2011.03.008 |
[26] | 王俊安,李冬,田智勇,等. 常温下磷酸盐对城市污水厌氧氨氧化的影响[J]. 中国给水排水,2009,25(19):31-33 |
[27] | CHAO.A.Nonparametric estimation of the number of classes in a population[J].Scandinavian Journal of Statistics,1984,11(4):265-270 |
[28] | KARTAL B, DE A N M, MAALCKE W, et al.How to make a living from anaerobic ammonium oxidation[J].FEMS Microbiology Reviews,2013,37(3):428-461 10.1111/1574-6976.12014 |
[29] | JETTEN M.The anaerobic oxidation of ammonium[J].FEMS Microbiology Reviews,1998,22(5):421-437 10.1111/j.1574-6976.1998.tb00379.x |
[30] | 李军文,郑金来,晁福寰,等. 一些硝化细菌的分离与鉴定[J]. 应用与环境工程生物学报,2004,10(6):786-789 10.3321/j.issn:1006-687X.2004.06.024 |
[31] | 陈重军,张海芹,汪瑶琪,等. 基于高通量测序的ABR厌氧氨氧化反应器各隔室细菌群落特征分析[J]. 环境科学,2016,37(7):2652-2658 10.13227/j.hjkx.2016.07.031 |
[32] | 付融冰,朱宜平,杨海真,等. 连续流湿地中DO、ORP状况及与植物根系分布的关系[J]. 环境科学学报,2008,28(10):2036-2041 10.3321/j.issn:0253-2468.2008.10.016 |
[33] | STROUS M, PELLETIER E, MANGENOT S, et al.Deciphering the evolution and metabolism of an anammox bacterium from a community genome[J].Nature,2006,440(7085):790-794 10.1038/nature04647 |
Turn off MathJax -->
点击查看大图
计量
文章访问数:1388
HTML全文浏览数:944
PDF下载数:467
施引文献:0
出版历程
刊出日期:2018-04-22
-->
MTF-CWs工艺对剩余污泥厌氧消化液的强化脱氮效果
苏光曦1,,杨永哲1,
张雷2,
方进宾1,
程果1
1.西安建筑科技大学环境与市政工程学院,西安 710055
2.铜川市污水处理厂,铜川 727000
基金项目: 陕西省重点科技创新团队计划(2017KCT-19-01) 高等学校博士学科点专项科研基金(20116120110008)
关键词: 人工湿地/
剩余污泥厌氧消化液/
硝化/
自养反硝化/
高通量测序
摘要:采用多级潮汐流人工湿地(multi-stage tidal flow constructed wetlands, MTF-CWs)处理城市污水处理厂剩余污泥厌氧消化液(excess sludge anaerobic digester liquids, ES-ADL),以垂直潮汐流的运行方式强化硝化,并根据进水NH4+-N和TN浓度分为2种不同工况。实验结果表明:在进水COD、NH4+-N和TN浓度分别为(293.68±9.62)、(845.70±11.53)和(847.00±11.47)mg·L-1的条件下(工况1),出水COD、NH4+-N和TN浓度分别为(84.47±8.10)、(8.81±1.74)和(351.50±7.78)mg·L-1,COD、NH4+-N和TN的平均去除率分别为72.45%、98.93%和56.48%;在进水COD、NH4+-N和TN浓度分别为(413.31±7.47)、(1 023.85±8.32)和(1 025.78±8.31)mg·L-1的条件下(工况2),出水COD、NH4+-N和TN浓度分别为(51.60±6.05)、(9.58±3.13)和(359.92±7.68)mg·L-1。COD、NH4+-N和TN的平均去除率分别为87.34%、99.05%和64.68%。在上述2种工况条件下,可将城市污水处理厂ES-ADL回流引起的氮循环累积量分别降低58.50%和62.19%。溶解氧消耗计算结果表明:MTF-CWs并没有提供NH4+-N的氧化(全程硝化或短程硝化过程)所需要的溶解氧;氮平衡计算结果表明:2种工况条件下通过非传统硝化-反硝化途径(如厌氧氨氧化)去除的总氮负荷分别占据总氮去除负荷的86.30%和82.53%。采用Miseq高通量测序技术进行菌群分析,结果表明:在反硝化脱氮贡献最大的人工湿地单元存在大量的厌氧氨氧化细菌Candidatus Kuenenia,且其占比随着取样深度(0.05~0.20 m)增加而增加(其丰度由5.08%增加到13.18%),表明MTF-CWs处理ES-ADL时存在厌氧氨氧化途径。
English Abstract
Performance of MTF-CWs process in enhanced nitrogen removal from excess sludge anaerobic digester liquids
SU Guangxi1,,YANG Yongzhe1,
ZHANG Lei2,
FANG Jinbin1,
CHENG Guo1
1.School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2.Tongchuan Municipal Wastewater Treatment Plant, Tongchuan 727000, China
Keywords: constructed wetlands/
excess sludge digester liquids/
nitrification/
denitrification/
high-throughput sequencing
Abstract:Multi-stage tidal flow constructed wetlands(MTF-CWs) was employed to treat the excess sludge anaerobic digesting liquids(ES-ADL) in a wastewater treatment plant, which was conducted under vertical tidal-flow mode to enhance nitrification, and two operating cases were set by the influent concentration of NH4+-N and TN. In operation case 1, when the influent concentration of COD, NH4+-N and TN was (293.68±9.62), (845.70±11.53) and (847.00±11.47)mg·L-1, the effluent concentration of COD, NH4+-N and TN was (84.47±8.10), (8.81±1.74) and (351.50±7.78)mg·L-1, and the corresponding average removal efficiency of COD, NH4+-N and TN reached 72.45%, 98.93% and 56.48%, respectively. In operational case 2, when the influent concentration of COD, NH4+-N and TN was (413.31±7.47), (1 023.85±8.32) and (1 025.78±8.31)mg·L-1, the effluent concentration of COD, NH4+-N and TN was (51.60±6.05), (9.58±3.13) and (359.92±7.68)mg·L-1, and the corresponding average removal efficiency of COD, NH4+-N and TN reached 87.34%, 99.50% and 64.68%. Under these two cases, MTF-CWs decreased 58.50% and 62.19% nitrogen accumulation caused by ES-ADL recycling, respectively. The calculation results of consumption of oxygen indicated that the removal of NH4+-N did not use up the demand dissolved oxygen of whole nitrification or shortcut nitrification. The calculation results of carbon balance indicated that 86.30% and 82.53% nitrogen loads, respectively, were removed by other nitrification-denitrification pathways under two operating cases. Miseq high-throughput sequencing was employed to analyze the microbial communities, large quantities of anaerobic ammonium oxidation bacteria Candidatus Kuenenia were found in the wetland unit which contributed most in denitrification, the ratio of Candidatus Kuenenia increased as the depth of sampling increased (5.08% to 13.18%), which substantiated the existence of anaerobic ammonium oxidation pathways during treating excess sludge digester liquids with application of MTF-CWs.