删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

MTF-CWs工艺对剩余污泥厌氧消化液的强化脱氮效果

本站小编 Free考研考试/2021-12-31

苏光曦1,,
杨永哲1,
张雷2,
方进宾1,
程果1
1.西安建筑科技大学环境与市政工程学院,西安 710055
2.铜川市污水处理厂,铜川 727000
基金项目: 陕西省重点科技创新团队计划(2017KCT-19-01)
高等学校博士学科点专项科研基金(20116120110008)




Performance of MTF-CWs process in enhanced nitrogen removal from excess sludge anaerobic digester liquids

SU Guangxi1,,
YANG Yongzhe1,
ZHANG Lei2,
FANG Jinbin1,
CHENG Guo1
1.School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2.Tongchuan Municipal Wastewater Treatment Plant, Tongchuan 727000, China

-->

摘要
HTML全文
(0)(0)
参考文献(33)
相关文章
施引文献
资源附件(0)
访问统计

摘要:采用多级潮汐流人工湿地(multi-stage tidal flow constructed wetlands, MTF-CWs)处理城市污水处理厂剩余污泥厌氧消化液(excess sludge anaerobic digester liquids, ES-ADL),以垂直潮汐流的运行方式强化硝化,并根据进水NH4+-N和TN浓度分为2种不同工况。实验结果表明:在进水COD、NH4+-N和TN浓度分别为(293.68±9.62)、(845.70±11.53)和(847.00±11.47)mg·L-1的条件下(工况1),出水COD、NH4+-N和TN浓度分别为(84.47±8.10)、(8.81±1.74)和(351.50±7.78)mg·L-1,COD、NH4+-N和TN的平均去除率分别为72.45%、98.93%和56.48%;在进水COD、NH4+-N和TN浓度分别为(413.31±7.47)、(1 023.85±8.32)和(1 025.78±8.31)mg·L-1的条件下(工况2),出水COD、NH4+-N和TN浓度分别为(51.60±6.05)、(9.58±3.13)和(359.92±7.68)mg·L-1。COD、NH4+-N和TN的平均去除率分别为87.34%、99.05%和64.68%。在上述2种工况条件下,可将城市污水处理厂ES-ADL回流引起的氮循环累积量分别降低58.50%和62.19%。溶解氧消耗计算结果表明:MTF-CWs并没有提供NH4+-N的氧化(全程硝化或短程硝化过程)所需要的溶解氧;氮平衡计算结果表明:2种工况条件下通过非传统硝化-反硝化途径(如厌氧氨氧化)去除的总氮负荷分别占据总氮去除负荷的86.30%和82.53%。采用Miseq高通量测序技术进行菌群分析,结果表明:在反硝化脱氮贡献最大的人工湿地单元存在大量的厌氧氨氧化细菌Candidatus Kuenenia,且其占比随着取样深度(0.05~0.20 m)增加而增加(其丰度由5.08%增加到13.18%),表明MTF-CWs处理ES-ADL时存在厌氧氨氧化途径。
关键词: 人工湿地/
剩余污泥厌氧消化液/
硝化/
自养反硝化/
高通量测序

Abstract:Multi-stage tidal flow constructed wetlands(MTF-CWs) was employed to treat the excess sludge anaerobic digesting liquids(ES-ADL) in a wastewater treatment plant, which was conducted under vertical tidal-flow mode to enhance nitrification, and two operating cases were set by the influent concentration of NH4+-N and TN. In operation case 1, when the influent concentration of COD, NH4+-N and TN was (293.68±9.62), (845.70±11.53) and (847.00±11.47)mg·L-1, the effluent concentration of COD, NH4+-N and TN was (84.47±8.10), (8.81±1.74) and (351.50±7.78)mg·L-1, and the corresponding average removal efficiency of COD, NH4+-N and TN reached 72.45%, 98.93% and 56.48%, respectively. In operational case 2, when the influent concentration of COD, NH4+-N and TN was (413.31±7.47), (1 023.85±8.32) and (1 025.78±8.31)mg·L-1, the effluent concentration of COD, NH4+-N and TN was (51.60±6.05), (9.58±3.13) and (359.92±7.68)mg·L-1, and the corresponding average removal efficiency of COD, NH4+-N and TN reached 87.34%, 99.50% and 64.68%. Under these two cases, MTF-CWs decreased 58.50% and 62.19% nitrogen accumulation caused by ES-ADL recycling, respectively. The calculation results of consumption of oxygen indicated that the removal of NH4+-N did not use up the demand dissolved oxygen of whole nitrification or shortcut nitrification. The calculation results of carbon balance indicated that 86.30% and 82.53% nitrogen loads, respectively, were removed by other nitrification-denitrification pathways under two operating cases. Miseq high-throughput sequencing was employed to analyze the microbial communities, large quantities of anaerobic ammonium oxidation bacteria Candidatus Kuenenia were found in the wetland unit which contributed most in denitrification, the ratio of Candidatus Kuenenia increased as the depth of sampling increased (5.08% to 13.18%), which substantiated the existence of anaerobic ammonium oxidation pathways during treating excess sludge digester liquids with application of MTF-CWs.
Key words:constructed wetlands/
excess sludge digester liquids/
nitrification/
denitrification/
high-throughput sequencing.

加载中
[1] HU Y, HE F, MA L, et al.Microbial nitrogen removal pathways in integrated vertical-flow constructed wetland systems[J].Bioresour Technology,2016,207:339-345 10.1016/j.biortech.2016.01.106
[2] FUX C, BOEHLER M, HUBER P, et al.Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant[J].Journal of Biotechnology,2002,99(3):295-306 10.1016/S0168-1656(02)00220-1
[3] AHN Y H, CHOI H C.Autotrophic nitrogen removal from sludge digester liquids in upflow sludge bed reactor with external aeration[J].Process Biochemistry,2006,41(9):1945-1950 10.1016/j.procbio.2006.04.006
[4] CHEN H, LIU S, YANG F, et al.The development of simultaneous partial nitrification, anammox and denitrification (SNAD) process in a single reactor for nitrogen removal[J].Bioresource technology,2009,100(4):1548-1554 10.1016/j.biortech.2008.09.003
[5] KICAISI A K.The potential for constructed wetlands for wastewater treatment and reuse in developing countries: A review[J].Ecological Engineering,2001,16(4):545-560 10.1016/S0925-8574(00)00113-0
[6] REDDY K R, D'ANGELO E M.Biogeochemical indicators to evaluate pollutant removal efficiency in constructed wetlands[J].Water Science and Technology,1997,35(5):1-10 10.1016/S0273-1223(97)00046-2
[7] 孙文杰,佘宗莲,关艳艳,等. 垂直流人工湿地净化污水的研究进展[J]. 安全与环境工程,2011,18(1):25-28 10.3969/j.issn.1671-1556.2011.01.007
[8] BRIX H.Do macrophytes play a role in constructed treatment wetlands?[J].Water Science and Technology,1997,35(5):11-17 10.1016/S0273-1223(97)00047-4
[9] SUN G, GRAY K R, BIDDLESTONE A J, et al.Treatment of agricultural wastewater in a combined tidal flow-downflow reed bed system[J].Water Science and Technology,1999,40(3):139-146 10.1016/S0273-1223(99)00457-6
[10] SOARES M I M.Biological denitrification of groundwater[J].Water Air & Soil Pollution,2000,123(1/2/3/4):183-193
[11] CYDZIKKWIATKOWSKA A, ZIELI?SKA M, BERNAT K, et al.Treatment of high-ammonium anaerobic digester supernatant by aerobic granular sludge and ultrafiltration processes[J].Chemosphere,2013,90(8):2208-2215 10.1016/j.chemosphere.2012.09.072
[12] DOSTA J, GALí A, BENABDALLAH E T, et al.Operation and model description of a sequencing batch reactor treating reject water for biological nitrogen removal via nitrite[J].Bioresource Technology,2007,98(11):2065-2075 10.1016/j.biortech.2006.04.033
[13] 赵联芳,朱伟,赵建. 人工湿地处理低碳氮比污染河水时的脱氮机理[J]. 环境科学学报,2006,26(11):1821-1827 10.3321/j.issn:0253-2468.2006.11.012
[14] 赵立,吴雷,杨永哲. 多级潮汐流人工湿地对污泥厌氧消化液中氨氮及有机物的去除特征[J]. 环境工程学报, 2016,10(7):3687-3693 10.12030/j.cjee.201501218
[15] 国家环境保护总局. 水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002
[16] BRIX H.Gas exchange through the soil-atmosphere interphase and through dead culms of phragmites australis in a constructed reed bed receiving domestic sewage[J].Water Research,1990,24(2):259-266 10.1016/0043-1354(90)90112-J
[17] VáZQUEZ M A, VARGA D D L, PLANA R, et al.Vertical flow constructed wetland treating high strength wastewater from swine slurry composting[J].Ecological Engineering,2013,50:37-43 10.1016/j.ecoleng.2012.06.038
[18] PELISSARI C, SEZERINO P H, DECEZARO S T, et al.Nitrogen transformation in horizontal and vertical flow constructed wetlands applied for dairy cattle wastewater treatment in southern Brazil[J].Ecological Engineering,2014,73:307-310 10.1016/j.ecoleng.2014.09.085
[19] HEROUVIM E, AKRATOS C S, TEKERLEKOPOULOU A, et al.Treatment of olive mill wastewater in pilot-scale vertical flow constructed wetlands[J].Ecological Engineering,2011,37(6):931-939 10.1016/j.ecoleng.2011.01.018
[20] WU S, ZHANG D, AUSTIN D, et al.Evaluation of a lab-scale tidal flow constructed wetland performance: Oxygen transfer capacity, organic matter and ammonium removal[J].Ecological Engineering,2011,37(11):1789-1795 10.1016/j.ecoleng.2011.06.026
[21] ROMAN, R V, GAVRILESCU M, et al.Oxygen transfer efficiency in the biosynthesis of antibiotics in bioreactors with a modified RUSHTON turbine agitator [J].Acta Biotechnologica,1994,14(2):181-192 10.1002/abio.370140212
[22] LOOSDRECHT C M V M, SALEM S.Biological treatment of sludge digester liquids[J].Water Science & Technology,2006,53(12):11-20 10.2166/wst.2006.401
[23] 张燕,周巧红,徐栋,等. 不同C/N下人工湿地的脱氮效果及其强化措施[J]. 环境工程学报,2013,7(11):4246-4250
[24] LIN Y F, JING S R, WANG T W, et al.Effects of macrophytes and external carbon sources on nitrate removal from groundwater in constructed wetlands[J].Environmental Pollution,2002,119(3):413-420 10.1016/S0269-7491(01)00299-8
[25] WANG L, LI T.Anaerobic ammonium oxidation in constructed wetlands with bio-contact oxidation as pretreatment[J].Ecological Engineering,2011,37(8):1225-1230 10.1016/j.ecoleng.2011.03.008
[26] 王俊安,李冬,田智勇,等. 常温下磷酸盐对城市污水厌氧氨氧化的影响[J]. 中国给水排水,2009,25(19):31-33
[27] CHAO.A.Nonparametric estimation of the number of classes in a population[J].Scandinavian Journal of Statistics,1984,11(4):265-270
[28] KARTAL B, DE A N M, MAALCKE W, et al.How to make a living from anaerobic ammonium oxidation[J].FEMS Microbiology Reviews,2013,37(3):428-461 10.1111/1574-6976.12014
[29] JETTEN M.The anaerobic oxidation of ammonium[J].FEMS Microbiology Reviews,1998,22(5):421-437 10.1111/j.1574-6976.1998.tb00379.x
[30] 李军文,郑金来,晁福寰,等. 一些硝化细菌的分离与鉴定[J]. 应用与环境工程生物学报,2004,10(6):786-789 10.3321/j.issn:1006-687X.2004.06.024
[31] 陈重军,张海芹,汪瑶琪,等. 基于高通量测序的ABR厌氧氨氧化反应器各隔室细菌群落特征分析[J]. 环境科学,2016,37(7):2652-2658 10.13227/j.hjkx.2016.07.031
[32] 付融冰,朱宜平,杨海真,等. 连续流湿地中DO、ORP状况及与植物根系分布的关系[J]. 环境科学学报,2008,28(10):2036-2041 10.3321/j.issn:0253-2468.2008.10.016
[33] STROUS M, PELLETIER E, MANGENOT S, et al.Deciphering the evolution and metabolism of an anammox bacterium from a community genome[J].Nature,2006,440(7085):790-794 10.1038/nature04647



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:1388
HTML全文浏览数:944
PDF下载数:467
施引文献:0
出版历程

刊出日期:2018-04-22




-->








MTF-CWs工艺对剩余污泥厌氧消化液的强化脱氮效果

苏光曦1,,
杨永哲1,
张雷2,
方进宾1,
程果1
1.西安建筑科技大学环境与市政工程学院,西安 710055
2.铜川市污水处理厂,铜川 727000
基金项目: 陕西省重点科技创新团队计划(2017KCT-19-01) 高等学校博士学科点专项科研基金(20116120110008)
关键词: 人工湿地/
剩余污泥厌氧消化液/
硝化/
自养反硝化/
高通量测序
摘要:采用多级潮汐流人工湿地(multi-stage tidal flow constructed wetlands, MTF-CWs)处理城市污水处理厂剩余污泥厌氧消化液(excess sludge anaerobic digester liquids, ES-ADL),以垂直潮汐流的运行方式强化硝化,并根据进水NH4+-N和TN浓度分为2种不同工况。实验结果表明:在进水COD、NH4+-N和TN浓度分别为(293.68±9.62)、(845.70±11.53)和(847.00±11.47)mg·L-1的条件下(工况1),出水COD、NH4+-N和TN浓度分别为(84.47±8.10)、(8.81±1.74)和(351.50±7.78)mg·L-1,COD、NH4+-N和TN的平均去除率分别为72.45%、98.93%和56.48%;在进水COD、NH4+-N和TN浓度分别为(413.31±7.47)、(1 023.85±8.32)和(1 025.78±8.31)mg·L-1的条件下(工况2),出水COD、NH4+-N和TN浓度分别为(51.60±6.05)、(9.58±3.13)和(359.92±7.68)mg·L-1。COD、NH4+-N和TN的平均去除率分别为87.34%、99.05%和64.68%。在上述2种工况条件下,可将城市污水处理厂ES-ADL回流引起的氮循环累积量分别降低58.50%和62.19%。溶解氧消耗计算结果表明:MTF-CWs并没有提供NH4+-N的氧化(全程硝化或短程硝化过程)所需要的溶解氧;氮平衡计算结果表明:2种工况条件下通过非传统硝化-反硝化途径(如厌氧氨氧化)去除的总氮负荷分别占据总氮去除负荷的86.30%和82.53%。采用Miseq高通量测序技术进行菌群分析,结果表明:在反硝化脱氮贡献最大的人工湿地单元存在大量的厌氧氨氧化细菌Candidatus Kuenenia,且其占比随着取样深度(0.05~0.20 m)增加而增加(其丰度由5.08%增加到13.18%),表明MTF-CWs处理ES-ADL时存在厌氧氨氧化途径。

English Abstract






--> --> --> 参考文献 (33)
相关话题/城市 环境科学 环境工程 计算 技术

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 城市生活垃圾热解重整制合成气计算分析
    李小明1,,肖燕1,孙钟华1,李要建11.中国天楹股份有限公司,海安226600CalculationandanalysisonMSWpyrolysisandreformingforsyngasLIXiaoming1,,XIAOYan1,SUNZhonghua1,LIYaojian11.ChinaT ...
    本站小编 Free考研考试 2021-12-31
  • 电化学水处理技术研究进展
    胡承志1,2,3,,刘会娟1,2,3,曲久辉1,21.中国科学院生态环境研究中心,环境水质学国家重点实验室,北京1000852.中国科学院大学,北京1000493.中国科学院生态环境研究中心,高浓度难降解有机废水处理技术国家工程实验室,北京100085基金项目:国家自然科学基金资助项目(514380 ...
    本站小编 Free考研考试 2021-12-31
  • 基于生物淋滤的城市污泥重金属溶出及形态迁移
    节剑勇1,,孙力平1,2,邱春生1,2,石璞玉3,王少坡1,2,刘范嘉4,陈剑41.天津城建大学环境与市政工程学院,天津3003842.天津市水质科学与技术重点实验室,天津3003843.北京科净源科技股份有限公司,北京1000424.天津凯英科技发展股份有限公司,天津300381基金项目:国家自然 ...
    本站小编 Free考研考试 2021-12-31
  • 纳米铁原位注入技术对六价铬污染地下水的修复
    王棣1,2,,魏文侠1,王琳玲2,王海见1,李佳斌11.轻工业环境保护研究所工业场地污染与修复北京市重点实验室,北京1000892.华中科技大学环境科学与工程学院,武汉430074基金项目:北京市科技计划项目(Z161100001216008)北京市改革与发展专项(613-2017A-23)Reme ...
    本站小编 Free考研考试 2021-12-31
  • 白云石和硫酸亚铁复配对城市污泥中重金属形态分布及生物有效性的影响
    陶祥运1,,李磊明1,刘小红1,司友斌11.安徽农业大学资源与环境学院,农田生态保育与污染防控安徽省重点实验室,合肥230036基金项目:公益性行业(农业)科研专项(201303101-06)国家科技支撑计划项目(2015BAD05B04-02)Effectofdolomite-ferroussul ...
    本站小编 Free考研考试 2021-12-31
  • 制药废水中抗生素的去除技术研究进展
    张昱1,2,3,,唐妹1,2,3,田哲1,2,3,高迎新1,2,3,杨敏1,2,31.中国科学院生态环境研究中心高浓度难降解有机废水处理技术国家工程实验室,北京1000852.中国科学院生态环境研究中心环境水质学国家重点实验室,北京1000853.中国科学院大学,北京100049基金项目:国家自然科 ...
    本站小编 Free考研考试 2021-12-31
  • 隔膜电解海水氧化耦合吸收脱硫脱硝净化船舶尾气技术
    张欢1,2,3,,钟鹭斌1,2,苑志华1,2,陈进生1,郑煜铭1,21.中国科学院城市环境研究所,中国科学院区域大气环境研究卓越创新中心,厦门3610212.中国科学院城市环境研究所,中国科学院城市污染物转化重点实验室,厦门3610213.中国科学院大学资源与环境学院,北京100049基金项目:厦门 ...
    本站小编 Free考研考试 2021-12-31
  • 脉冲供电技术去除高阻比粉尘
    丁鑫龙1,,王琼杰2,郎佳红1,吴金桃1,冯德仁1,潘绪超31.安徽工业大学电气与信息工程学院,马鞍山2430322.安徽工业大学能源与环境学院,马鞍山2430323.南京理工大学智能弹药国防重点学科实验室,南京210094Removalofhighspecificresistancedustfro ...
    本站小编 Free考研考试 2021-12-31
  • 2021年CERN生物监测规范与新技术交流研讨会在江西举办
    5月25日至28日,2021年CERN生物监测规范与新技术交流研讨会在江西吉安顺利举办,来自38个CERN陆地生态站、钱江源国家站等117人参加了研讨会。研讨会由中科院科技促进发展局主办,植物所植被与环境变化国家重点实验室CERN生物分中心承办。  本次研讨会设置了区域生物调查新技术、地下生态学研究 ...
    本站小编 Free考研考试 2021-12-31
  • 钱江源国家站举办遥感技术应用及数据处理方法培训交流会
    4月19日至23日,遥感技术应用及数据处理方法培训交流会在浙江钱江源森林生物多样性国家野外科学观测研究站(以下简称“钱江源国家站”)举办。来自中国森林生物多样性监测网络(CForBio)14个样地和网络外3个样地的48位青年研究人员和研究生参加了本次培训交流会。  培训交流会设置了无人机高光谱扫描操 ...
    本站小编 Free考研考试 2021-12-31