删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Fe0/S2O82-异相芬顿与生物组合工艺处理煤化工废水尾水

本站小编 Free考研考试/2021-12-31

李湛江1,,
谭雪云2,
吴锦华2,
江燕斌3,
盖恒军4
1.广州市城市管理技术研究中心,广州510170
2.华南理工大学环境与能源学院,工业聚集区污染控制与生态修复教育部重点实验室,污染控制与生态修复广东省普通高等学校重点实验室,广州510006
3.华南理工大学化学与化工学院,广州510640
4.青岛科技大学化工学院,青岛266042
基金项目: 国家科技支撑计划项目(2014BAC10B01-3)
广东省水利科技创新项目(2016-26)
广东省科技计划项目 (2016A010103002)
国家自然科学基金资助项目(41571302)
中央高校基本科研业务费资助项目(2017ZD025)




Depth-treatment of effluent from coal-chemical engineering wastewater treatment by a sequential Fe0/S2O82- heterogeneous Fenton reaction and biodegradation process

LI Zhanjiang1,,
TAN Xueyun2,
WU Jinhua2,
JIANG Yanbin3,
GAI Hengjun4
1.Guangzhou Research Center of City Management Technology, Guangzhou 510170, China
2.Key Laboratory of Environment Protection and Eco-Remediation of Guangdong Regular Higher Education Institution, Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
3.School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
4.School of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

-->

摘要
HTML全文
(0)(0)
参考文献(22)
相关文章
施引文献
资源附件(0)
访问统计

摘要:为实现煤化工废水尾水低成本达标排放,采用零价铁/过硫酸盐(Fe0/S2O82-)异相芬顿与气升环流反应器(ALR)组合工艺对其进行深度处理并分析处理成本。结果表明,在pH为6.8、Fe0和S2O82-投加量分别为2 g?L-1和15 mmol?L-1的条件下,Fe0/S2O82-体系对COD和色度去除率分别为56%和50%。气相色谱-质谱和气相色谱分析显示,尾水中难降解芳香化合物被转化成小分子有机酸,这些小分子有机酸虽然在异相芬顿反应中难以进一步降解,但容易被好氧微生物吸收和利用;出水经ALR处理后,COD和色度进一步从150 mg?L-1和75倍降到48 mg?L-1和25倍,总去除率达到86%和83%。由于异相芬顿反应不需调节pH且出水铁离子浓度小于9 mg?L-1,该组合工艺在避免大量铁泥产生的同时可低成本地实现煤化工废水尾水达标排放。
关键词: 零价铁/
过硫酸盐/
芬顿反应/
深度处理/
煤化工废水

Abstract:A sequential Fe0/S2O82- heterogeneous Fenton reaction and biodegradation process was employed for the depth-treatment of coal-chemical engineering wastewater to meet the discharge standard and its operational cost was discussed. The results showed that COD and color removal efficiency of 56% and 50% was achieved at initial pH of 6.8, Fe0 of 2 g?L-1 and S2O82- of 15 mmol?L-1, respectively in the Fe0/S2O82- Fenton reaction. According to gas chromatography-mass spectrometer (GC-MS) and gas chromatography (GC) analysis, the recalcitrant aromatic compounds were effectively decomposed into low-molecular-weight organic acids. These acids were resistant to the Fe0/S2O82- Fenton reaction, while they were effectively eliminated in the sequential air lift reactor (ALR), resulting in a further decrease of COD and color concentration from 150 to 48 mg?L-1 and from 75 to 25 times, respectively. A total COD and color removal efficiency of 86% and 83% could be achieved after the above sequential process. Since high performance was achieved at an original pH of 6.8 and ferric ion was below 9 mg?L-1 during the Fe0/S2O82- Fenton reaction, sludge disposal could be avoided after the reaction. It indicated that this combined process is a promising and cost-effective way for the depth-treatment of coal-chemical engineering wastewater to satisfy discharge requirements.
Key words:zero valent iron/
persulfate/
Fenton reaction/
depth treatment/
coal-chemical engineering wastewater.

加载中
[1] 丛轮刚, 南海娟, 王翠翠, 等. 煤化工综合废水处理技术及应用进展[J]. 环境工程,2015,33(S1):20-24
[2] 李志远, 韩洪军. 芬顿氧化-混凝处理煤化工废水生化出水试验研究[J]. 给水排水,2013,49(S1):316-319
[3] 叶文旗, 赵翠, 潘一, 等. 高级氧化技术处理煤化工废水研究进展[J]. 当代化工,2013,42(2):172-174
[4] 林光辉, 吴锦华, 李平, 等. 零价铁与双氧水异相Fenton降解活性艳橙X-GN[J]. 环境工程学报,2013,7(3):913-917
[5] 林影, 梁好, 刘传胜, 等. 零价铁与过硫酸盐异相芬顿降解活性艳橙X-GN[J]. 环境保护科学,2016,42(4):110-114 10.16803/j.cnki.issn.1004-6216.2016.04.023
[6] LE C, WU J H, LI P, et al.Decolorization of anthraquinone dye reactive blue 19 by the combination of persulfate and zero-valent iron[J].Water Science and Technology,2011,64(3):754-759 10.2166/wst.2011.708
[7] 张万辉, 韦朝海. 焦化废水的污染物特征及处理技术的分析[J]. 化工环保,2015,35(3):272-278 10.3969/j.issn.1006-1878.2015.03.010
[8] WU J H, CHEN G C, GU J J, et al.Effects of hydraulic retention time and nitrobenzene concentration on the performance of sequential upflow anaerobic filter and air lift reactors in treating nitrobenzene-containing wastewater[J].Environmental Science and Pollution Research,2014,21(22):12800-12810 10.1007/s11356-014-3225-9
[9] 熊艳, 魏宏斌, 陈良才. 气升式环流反应器在水处理中的应用及研究进展[J]. 中国给水排水,2010,26(10):9-12
[10] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社,2002 10.3969/j.issn.1002-6002.2003.01.027
[11] 刘梦林, 李平, 于可可, 等. 有机负荷对ABR处理疫病动物尸骸废水的产酸及产甲烷特性影响[J]. 环境工程学报,2016,10(6):3051-3056 10.12030/j.cjee.201511023
[12] WU H, DOU X, DENG D, et al.Decolourization of the azo dye orange g in aqueous solution via a heterogeneous Fenton-like reaction catalysed by goethite[J].Environmental Technology,2012,33(14):1545-1552 10.1080/09593330.2011.635709
[13] 贺润升, 徐荣华, 韦朝海. 焦化废水生物出水溶解性有机物特性光谱表征[J]. 环境化学,2015,34(1):129-136 10.7524/j.issn.0254-6108.2015.01.2014042401
[14] HUSSAIN I, ZHANG Y, HUANG S, et al.Degradation of p-chloroaniline by persulfate activated with zero-valent iron[J].Chemical Engineering Journal,2012,203(5):269-276 10.1016/j.cej.2012.06.120
[15] USMAN M, FAURE P, RUBY C, et al.Application of magnetite-activated persulfate oxidation for the degradation of PAHs in contaminated soils[J].Chemosphere,2012,87(3):234-240 10.1016/j.chemosphere.2012.01.001
[16] 刘占孟, 占鹏, 李静, 等. 零价铁活化过硫酸盐处理渗滤液生化尾水[J]. 中国给水排水,2016,32(9):112-115
[17] LEE Y C, LO S L, CHIUEH P T, et al.Microwave-hydrothermal decomposition of perfluorooctanoic acid in water by iron-activated persulfate oxidation[J].Water Research,2010,44(3):886-892 10.1016/j.watres.2009.09.055
[18] 贾冬梅, 万立之, 姚海波, 等. 零价铁活化过硫酸钠降解2-萘磺酸[J]. 环境工程,2016,34(9):9-12 10.13205/j.hjgc.201609003
[19] 张冉. 非均相催化臭氧氧化深度处理煤化工废水[D]. 哈尔滨: 哈尔滨工业大学,2011
[20] 孙娟, 张维勇, 张晓琴, 等. 芬顿试剂深度处理APMP制浆废水的中试结果[J]. 中华纸业,2013,34(12):42-44 10.3969/j.issn.1007-9211.2013.12.011
[21] 孙桐泽, 尹君贤, 孙崎胜, 等. 焦化废水膜滤浓缩液零排放解决方案[J]. 燃料与化工,2016,47(3):49-51 10.3969/j.issn.1001-3709.2016.03.020
[22] ONCEL M S, MUHCU A, DEMIRBAS E, et al.A comparative study of chemical precipitation and electrocoagulation for treatment of coal acid drainage wastewater[J].Journal of Environmental Chemical Engineering,2013,1(4):989-995 10.1016/j.jece.2013.08.008



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:1380
HTML全文浏览数:911
PDF下载数:564
施引文献:0
出版历程

刊出日期:2018-03-22




-->








Fe0/S2O82-异相芬顿与生物组合工艺处理煤化工废水尾水

李湛江1,,
谭雪云2,
吴锦华2,
江燕斌3,
盖恒军4
1.广州市城市管理技术研究中心,广州510170
2.华南理工大学环境与能源学院,工业聚集区污染控制与生态修复教育部重点实验室,污染控制与生态修复广东省普通高等学校重点实验室,广州510006
3.华南理工大学化学与化工学院,广州510640
4.青岛科技大学化工学院,青岛266042
基金项目: 国家科技支撑计划项目(2014BAC10B01-3) 广东省水利科技创新项目(2016-26) 广东省科技计划项目 (2016A010103002) 国家自然科学基金资助项目(41571302) 中央高校基本科研业务费资助项目(2017ZD025)
关键词: 零价铁/
过硫酸盐/
芬顿反应/
深度处理/
煤化工废水
摘要:为实现煤化工废水尾水低成本达标排放,采用零价铁/过硫酸盐(Fe0/S2O82-)异相芬顿与气升环流反应器(ALR)组合工艺对其进行深度处理并分析处理成本。结果表明,在pH为6.8、Fe0和S2O82-投加量分别为2 g?L-1和15 mmol?L-1的条件下,Fe0/S2O82-体系对COD和色度去除率分别为56%和50%。气相色谱-质谱和气相色谱分析显示,尾水中难降解芳香化合物被转化成小分子有机酸,这些小分子有机酸虽然在异相芬顿反应中难以进一步降解,但容易被好氧微生物吸收和利用;出水经ALR处理后,COD和色度进一步从150 mg?L-1和75倍降到48 mg?L-1和25倍,总去除率达到86%和83%。由于异相芬顿反应不需调节pH且出水铁离子浓度小于9 mg?L-1,该组合工艺在避免大量铁泥产生的同时可低成本地实现煤化工废水尾水达标排放。

English Abstract






--> --> --> 参考文献 (22)
相关话题/广州 工艺 环境工程 华南理工大学 生态