朱玲1,
王春雨1,
王建宏1
1.北京石油化工学院环境工程系, 北京102617
基金项目: 国家自然科学基金资助项目 (41601336)
Optimization of thermally enhanced SVE process for remediation of hydrocarbon contaminated soil by response surface methodology
LI Xiaoya1,,ZHU Ling1,
WANG Chunyu1,
WANG Jianhong1
1.Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:采用热强化土壤气相抽提技术,优化影响烃类污染土壤处理效率的参数。在单因素实验的基础上,以通气速率、土量、水蒸气浓度为考察因素,以尾气中HC浓度达到750 mg·m-3时的脱附时间为评价指标,采用Design-Expert响应曲面法,考察各影响因素的单独变量作用及交互作用对土壤中烃类组分去除速率的影响,建立二次多项式模型。单因素变量、通气速率与土量的交互项均对烃类污染物的去除速率有显著影响。模型优化结果显示,热强化SVE处理污染土壤的最佳工艺为通气速率81 mL·min-1、土量77 mL、水蒸气浓度14%,模型预测最短脱附时间213.58 min,实验验证结果的平均值是224 min,测定值与预测值之间相对误差为4.88%。
关键词: 热强化气相抽提法/
烃类污染土壤/
响应曲面法/
脱附时间
Abstract:Thermal enhanced soil vapor extraction technique was adopted to optimize parameters affecting the treatment efficiency of hydrocarbon contaminated soil. Based on single-factor tests results, the rate of ventilation, the volume of soil, the concentration of water vapor were considered as the influential factors, and the time of oil vapor concentration in outgas reaching 750 mg·m-3 was selected as the evaluation indicator. The Design-Expert response surface method was used to investigate the effects of the independent variables and their interactions on the removal rate of hydrocarbon component from the contaminated soil, and the quadratic polynomial response surface model was constructed subsequently. The response surface analysis results showed that the single variables and the interaction between the ventilation rate and the soil amount were significantly correlated with the removal rate of hydrocarbon component. According to the model optimization results, the optimal parameters were determined ventilation rate with 81 mL·min-1, the soil amount with 77 mL and the water vapor concentration with 14%, and the simulated desorption time was 213.58 min by heat enhanced SVE. The average desorption time of experimental results was 224 min, the relative error between the model-predicted and the measured values was 4.88%.
Key words:heat enhanced soil vapor extraction/
hydrocarbon contaminated soil/
response surface methodology/
desorption time.
[1] | 冯静, 张增强, 李念, 等. 铅锌厂重金属污染土壤的螯合剂淋洗修复及其应用[J]. 环境工程学报,2015, 9(11): 5617–5625 |
[2] | 李巨峰, 张坤峰, 王明勇, 等. 轻质油污染土壤的原位修复技术现场试验[J]. 油气田环境保护,2014, 24(4): 15–18 |
[3] | 黄国强. 土壤气相抽提(SVE)中有机污染物的运移与数学模拟研究[D]. 天津: 天津大学, 2002 |
[4] | 陈家军, 田亮, 李玮, 等. 土壤柴油污染修复的抽气提取去除实验研究[J]. 环境工程学报, 2008,2(10): 1416–1420 |
[5] | 罗成成, 张焕祯, 毕璐莎, 等. 气相抽提技术修复石油类污染土壤的研究进展[J]. 环境工程,2015, 33(10): 158–162 10.13205/j.hjgc.201510035 |
[6] | 刘少卿, 姜林, 黄喆, 等. 挥发及半挥发有机物污染场地蒸汽抽提修复技术原理与影响因素[J]. 环境科学, 2011, 32(3): 825–833 |
[7] | ALVIM-FERRAZ M C M, ALBERGARIA J T, DELERUE-MATOSA C.Soil remediation time to achieve clean-up goals II: Influence of natural organic matter and water contents[J].Chemosphere, 2006,64(5): 817–825 10.1016/j.chemosphere.2005.10.065 |
[8] | 李金惠, 聂永丰, 马海斌, 等. 油污染土壤气体抽排去污模型及影响因素[J]. 环境科学, 2002, 23(1): 92–96 |
[9] | 梅志华, 赵申. 热强化气相抽提法在某有机污染场地的中试应用[J]. 化工管理,2015 (11): 167–168 |
[10] | SOARES A A, ALBERGARIA J T, DOMINGUES V F, et al.Remediation of soils combining soil vapor extraction and bioremediation: Benzene[J].Chemosphere, 2010,80(8): 823–828 10.1016/j.chemosphere.2010.06.036 |
[11] | HERON G, PARKER K, GALLIGAN J, et al.Thermal treatment of eight CVOC source zones to near nondetect concentrations[J].Ground Water Monitoring & Remediation, 2009, 29(3): 56–65 10.1111/j.1745-6592.2009.01247.x |
[12] | 杨勇, 黄海, 陈美平, 等. 异位热解吸技术在有机污染土壤修复中的应用和发展[J]. 环境工程,2016, 6(6):559–570 10.3969/j.issn.1674-991X.2016.06.081 |
[13] | 颜薇芝, 郝健, 孙俊松, 等. 拉乌尔菌 sari01 的分离及其异养硝化好氧反硝化特性[J]. 环境科学,2016, 37(7): 2673–2680 10.13227/j.hjkx.2016.07.034 |
[14] | 崔潇潇, 高原, 吕贻忠. 北京市大兴区土壤肥力的空间变异[J]. 农业工程学报,2010, 26(9): 327–333 |
[15] | 李晓雅, 朱玲, 肖楠, 等. 热强化SVE技术对烃类污染土壤修复的影响[J]. 工业安全与环保, 2017,43(6): 101–106 |
[16] | 贺晓珍, 周友亚, 汪莉, 等. 土壤气相抽提法去除红壤中挥发性有机污染物的影响因素研究[J]. 环境工程学报, 2008, 2(5): 679–683 |
[17] | 朱杰. 苯系物污染土壤气相抽提处理试验[J]. 环境化学, 2013, 32(9): 1646–1652 |
[18] | 卢中华, 裴宗平, 鹿守敢, 等. 通风速率对土壤中四氯化碳污染物去除效率的影响研究[J]. 农业环境科学学报, 2011, 30(1): 55–59 |
[19] | 马艳飞, 郑西来, 冯雪冬, 等. 气相抽提法修复油污土壤的影响因素研究[J]. 非金属矿,2011,34(4): 53–55 |
[20] | FEN C S, CHANG C.Influence of spatial variability of soil properties on mass removal for a soil vapor extraction system[J].Journal of the Chinese Institute of Engineers, 2007, 30(6): 997–1007 10.1080/02533839.2007.9671327 |
[21] | ALBERGARIA J T, ALVIM-FERRAZ M C M, DELERUE-MATOSA C.Remediation efficiency of vapour extraction of sandy soils contaminated with cyclohexane: Influence of air flow rate, water and natural organic matter content[J].Environmental Pollution, 2006,143(1): 146–152 10.1016/j.envpol.2005.10.040 |
[22] | YOON H, KIM J H, LILJESTRANG H M, et al.Effect of water content on transient nonequilibrium NAPL–gas mass transfer during soil vapor extraction[J].Journal of Contaminant Hydrology, 2002,54(1): 1–18 10.1016/S0169-7722(01)00164-4 |
[23] | 狄军贞, 赵微, 朱志涛, 等. 响应曲面法优化强化混凝工艺处理微污染水[J]. 环境工程学报, 2017,11(1): 27–32 10.12030/j.cjee.201508164 |
[24] | LIU C, LIU Y, LIAO W, et al.Application of statistically-based experimental designs for the optimization of nisin production from whey[J].Biotechnology Letters, 2003,25(11):877–882 10.1023/A:1024009027255 |
Turn off MathJax -->
点击查看大图
计量
文章访问数:883
HTML全文浏览数:545
PDF下载数:507
施引文献:0
出版历程
刊出日期:2018-03-22
-->
响应曲面优化烃类污染土壤热强化SVE修复工艺
李晓雅1,,朱玲1,
王春雨1,
王建宏1
1.北京石油化工学院环境工程系, 北京102617
基金项目: 国家自然科学基金资助项目 (41601336)
关键词: 热强化气相抽提法/
烃类污染土壤/
响应曲面法/
脱附时间
摘要:采用热强化土壤气相抽提技术,优化影响烃类污染土壤处理效率的参数。在单因素实验的基础上,以通气速率、土量、水蒸气浓度为考察因素,以尾气中HC浓度达到750 mg·m-3时的脱附时间为评价指标,采用Design-Expert响应曲面法,考察各影响因素的单独变量作用及交互作用对土壤中烃类组分去除速率的影响,建立二次多项式模型。单因素变量、通气速率与土量的交互项均对烃类污染物的去除速率有显著影响。模型优化结果显示,热强化SVE处理污染土壤的最佳工艺为通气速率81 mL·min-1、土量77 mL、水蒸气浓度14%,模型预测最短脱附时间213.58 min,实验验证结果的平均值是224 min,测定值与预测值之间相对误差为4.88%。
English Abstract
Optimization of thermally enhanced SVE process for remediation of hydrocarbon contaminated soil by response surface methodology
LI Xiaoya1,,ZHU Ling1,
WANG Chunyu1,
WANG Jianhong1
1.Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
Keywords: heat enhanced soil vapor extraction/
hydrocarbon contaminated soil/
response surface methodology/
desorption time
Abstract:Thermal enhanced soil vapor extraction technique was adopted to optimize parameters affecting the treatment efficiency of hydrocarbon contaminated soil. Based on single-factor tests results, the rate of ventilation, the volume of soil, the concentration of water vapor were considered as the influential factors, and the time of oil vapor concentration in outgas reaching 750 mg·m-3 was selected as the evaluation indicator. The Design-Expert response surface method was used to investigate the effects of the independent variables and their interactions on the removal rate of hydrocarbon component from the contaminated soil, and the quadratic polynomial response surface model was constructed subsequently. The response surface analysis results showed that the single variables and the interaction between the ventilation rate and the soil amount were significantly correlated with the removal rate of hydrocarbon component. According to the model optimization results, the optimal parameters were determined ventilation rate with 81 mL·min-1, the soil amount with 77 mL and the water vapor concentration with 14%, and the simulated desorption time was 213.58 min by heat enhanced SVE. The average desorption time of experimental results was 224 min, the relative error between the model-predicted and the measured values was 4.88%.