邱珊1,2,
朱英实1,2,
邓凤霞1,2,
马放1,2,3
1.哈尔滨工业大学环境学院,哈尔滨 150090
2.城市水资源与水环境国家重点实验室,哈尔滨 150090
3.哈尔滨工业大学宜兴环保研究院,宜兴 214205
基金项目: 城市水资源与水环境国家重点实验室自主课题(HCK201708)
国家重点研发计划项目(2016YFC0401102)
Utilization of response surface modeling to optimize hydrogen peroxide and hydroxyl radicals generation by electro-Fenton with copper-foam as cathode
LI Guojun1,2,,QIU Shan1,2,
ZHU Yingshi1,2,
DENG Fengxia1,2,
MA Fang1,2,3
1.School of Environment, Harbin Institute of Technology, Harbin 150090, China
2.State Key Laboratory of Urban Water Resource and Environment, Harbin 150090, China
3.Yixing Environmental Protection Research Institute of Harbin Institute of Technology, Yixing 214205, China
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:泡沫金属因其三维结构及优良导电性,使其作为电芬顿阴极开始引起****关注。选择泡沫铜为阴极、石墨棒为阳极,搭建微孔曝气均匀的玻璃反应器,提高体系传质效率,并通过响应面探索体系产H2O2和·OH的机理。用响应面设计3因素(pH、电流、Fe2+初始浓度)3水平实验,得到体系产H2O2和·OH与3种因素之间的非线性回归方程,得到最优条件:当pH=2、电流0.25 A、Fe2+初始浓度为15 μmol·L-1时H2O2产量最大,为457.27 μmol·L-1;当pH=2、电流0.25 A、Fe2+初始浓度为20 μmol·L-1时·OH产量最多,可达18.56 μmol·L-1。根据方差分析,二次模型显著性很高(R2H2O2=0.977 8,R2·OH=0.964 2),能够很好地模拟实验结果。通过铜溶出实验分析得出铜溶出量在0.4~1.8 mg·L-1之间,符合现行污水排入城镇下水道水质标准(CJ 343-2010)。
关键词: 电化学/
自由基/
优化设计/
泡沫铜/
响应面模型/
过氧化氢
Abstract:Foam-metal used as cathode in electro-Fenton (EF) has attracted attention recently due to it three-dimensional structure and good conductivity. In this study, copper-foam and graphite rod were used as cathode and anode, respectively. Moreover, micro-porous aeration glass reactor was designed, aiming for improving the low oxygen mass transfer rate in the EF configuration. The mechanism involved electro-generated active oxygen species (H2O2 and ·OH) was investigated by response surface modeling method. The effect of the different parameters affecting the performance of active oxygen species generation was investigated, including pH, current density and initial ferrous concentration. Response surface modeling method, more specifically, Box-Behnken design (BBD) was used to optimize the above-mentioned parameters for active oxygen species generation and then to put forward polynomial models between these parameters and active oxygen species. Results show that significant polynomial models were obtained (R2H2O2=0.977 8,R2·OH=0.964 2) and optimal conditions was obtained from BBD were shown as follows:pH=2, ferrous concentration=15 μmol·L-1 and current=0.25 A for H2O2 generation, while pH=2, ferrous concentration=20 μmol·L-1 and current=0.25 A for hydroxyl radicals generation. The copper concentration released from copper-foam cathode ranged from 0.4 to 1.8 mg·L-1, lowering than the standard concentration (CJ 343-2010).
Key words:electrochemistry/
radical/
optimization design/
cupper foam/
response surface modeling/
hydrogen peroxide.
[1] | ESHAGHZADE Z, PAJOOTAN E, BAHRAMI H, et al.Facile synthesis of Fe3O4 nanoparticles via aqueous based electro chemical route for heterogeneous electro-Fenton removal of azo dyes[J].Journal of the Taiwan Institute of Chemical Engineers,2017,71:91-105 |
[2] | LE T X H, NGUYEN T V, AMADOU YACOUBA Z, et al.Correlation between degradation pathway and toxicity of acetaminophen and its by-products by using the electro-Fenton process in aqueous media[J].Chemosphere,2017,172:1-9 |
[3] | 石岩,王启山,岳琳,等.三维电极-电Fenton法处理垃圾渗滤液[J].天津大学学报,2009,42(3):248-252 |
[4] | 张士卫.泡沫金属的研究与应用进展[J].粉末冶金技术,2016,34(3):222-227 |
[5] | 汤茜,孙娟,任小蕾,等.泡沫镍和泡沫铜阴极电类Fenton氧化降解对硝基酚的比较[J].化工进展,2017,36(7):2653-2659 |
[6] | 张剑桥,迟惠中,宋阳,等.Ce3+与Cu2+协同强化芬顿体系氧化苯酚的效能与机制研究[J].环境科学,2016,37(8):3067-3072 |
[7] | AGUIAR A, FERRAZ A.Fe3+-and Cu2+-reduction by phenol derivatives associated with azure B degradation in Fenton-like reactions[J].Chemosphere,2007,66(5):947-954 |
[8] | NICHELA D A, BERKOVIC A M, COSTANTE M R, et al.Nitrobenzene degradation in Fenton-like systems using Cu(Ⅱ) as catalyst.Comparison between Cu(Ⅱ)-and Fe(Ⅲ)-based systems[J].Chemical Engineering Journal,2013,228:1148-1157 |
[9] | PHAM A N, XING G, MILLER C J, et al.Fenton-like copper redox chemistry revisited:Hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production[J].Journal of Catalysis,2013,301:54-64 |
[10] | 王永菲,王成国.响应面法的理论与应用[J].中央民族大学学报(自然科学版),2005,14(3):236-240 |
[11] | OZCAN A, SAHIN Y, KOPARAL S A, et al.Carbon sponge as a new cathode material for the electro-Fenton process:Comparison with carbon felt cathode and application to degradation of synthetic dye basic blue 3 in aqueous medium[J].Journal of Electroanalytical Chemistry,2008,616(1/2):71-78 |
[12] | 谷学新,邰超,邹洪,等.一个新的测定Fenton反应产生的·OH及清除的荧光方法[J].分析科学学报,2002,18(6):460-462 |
[13] | AI Z, XIAO H, MEI T, et al.Electro-Fenton degradation of rhodamine B based on a composite cathode of Cu2O nanocubes and carbon nanotubes[J].Journal of Physical Chemistry C,2008,112(31):11929-11935 |
[14] | SALAZAR R, BRILLAS E, SIRES I.Finding the best Fe2+/Cu2+ combination for the solar photoelectro-Fenton treatment of simulated wastewater containing the industrial textile dye disperse blue 3[J].Applied Catalysis B:Environmental,2012,115-116:107-116 |
[15] | 周午阳,张朝升,孙志民,等.Cu2+助芬顿法处理高浓度邻苯二甲酸二甲酯废水[J].环境工程学报,2014,8(7):2789-2794 |
[16] | PEREZ-BENITO J F.Reaction pathways in the decomposition of hydrogen peroxide catalyzed by copper(Ⅱ)[J].Journal of Inorganic Biochemistry,2004,98(3):430-438 |
[17] | 周蕾,周明华.电芬顿技术的研究进展[J].水处理技术,2013,39(10):6-11 |
[18] | FERRAG-SIAGH F, FOURCADE F, SOUTREL I, et al.Electro-Fenton pretreatment for the improvement of tylosin biodegradability[J].Environmental Science and Pollution Research,2014,21(14):8534-8542 |
[19] | 班福忱,戴美月.电芬顿技术的研究现状和进展[J].建筑与预算,2016(11):38-41 |
[20] | WANG C T, HU J L, CHOU W L, et al.Removal of color from real dyeing wastewater by electro-Fenton technology using a three-dimensional graphite cathode[J].Journal of Hazardous Materials,2008,152(2):601-606 |
[21] | BRILLAS E, SIRE'S I, OTURAN M A.Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry[J].Chemical Reviews,2009,109(12):6570-6631 |
[22] | DE LUNA M D G, VECIANA M L, COLADES J I, et al.Factors that influence degradation of acetaminophen by Fenton processes[J].Journal of the Taiwan Institute of Chemical Engineers,2014,45(2):565-570 |
[23] | 邱珊,陈聪,邓凤霞,等.石墨电极E-Fenton法处理罗丹明B废水[J].浙江大学学报(工学版),2016,50(4):704-713 |
[24] | TAMIMI M, QOURZAL S, BARKA N, et al.Methomyl degradation in aqueous solutions by Fenton’s reagent and the photo-Fenton system[J].Separation and Purification Technology,2008,61(1):103-108 |
[25] | RATHI A, RAJOR H K, SHARMA R K.Photodegradation of direct yellow-12 using UV/H2O2/Fe2+[J].Journal of Hazardous Materials,2003,102(2/3):231-241 |
[26] | 汪昆平,杨林,汪春艳,等.Fenton氧化体系·OH、ORP、H2O2和Fe2+变化特征[J].水处理技术,2011,7(12):36-41 |
Turn off MathJax -->
点击查看大图
计量
文章访问数:1285
HTML全文浏览数:876
PDF下载数:333
施引文献:0
出版历程
刊出日期:2018-01-14
-->
响应面法对泡沫铜阴极电芬顿产H2O2与·OH性能优化
李国君1,2,,邱珊1,2,
朱英实1,2,
邓凤霞1,2,
马放1,2,3
1.哈尔滨工业大学环境学院,哈尔滨 150090
2.城市水资源与水环境国家重点实验室,哈尔滨 150090
3.哈尔滨工业大学宜兴环保研究院,宜兴 214205
基金项目: 城市水资源与水环境国家重点实验室自主课题(HCK201708) 国家重点研发计划项目(2016YFC0401102)
关键词: 电化学/
自由基/
优化设计/
泡沫铜/
响应面模型/
过氧化氢
摘要:泡沫金属因其三维结构及优良导电性,使其作为电芬顿阴极开始引起****关注。选择泡沫铜为阴极、石墨棒为阳极,搭建微孔曝气均匀的玻璃反应器,提高体系传质效率,并通过响应面探索体系产H2O2和·OH的机理。用响应面设计3因素(pH、电流、Fe2+初始浓度)3水平实验,得到体系产H2O2和·OH与3种因素之间的非线性回归方程,得到最优条件:当pH=2、电流0.25 A、Fe2+初始浓度为15 μmol·L-1时H2O2产量最大,为457.27 μmol·L-1;当pH=2、电流0.25 A、Fe2+初始浓度为20 μmol·L-1时·OH产量最多,可达18.56 μmol·L-1。根据方差分析,二次模型显著性很高(R2H2O2=0.977 8,R2·OH=0.964 2),能够很好地模拟实验结果。通过铜溶出实验分析得出铜溶出量在0.4~1.8 mg·L-1之间,符合现行污水排入城镇下水道水质标准(CJ 343-2010)。
English Abstract
Utilization of response surface modeling to optimize hydrogen peroxide and hydroxyl radicals generation by electro-Fenton with copper-foam as cathode
LI Guojun1,2,,QIU Shan1,2,
ZHU Yingshi1,2,
DENG Fengxia1,2,
MA Fang1,2,3
1.School of Environment, Harbin Institute of Technology, Harbin 150090, China
2.State Key Laboratory of Urban Water Resource and Environment, Harbin 150090, China
3.Yixing Environmental Protection Research Institute of Harbin Institute of Technology, Yixing 214205, China
Keywords: electrochemistry/
radical/
optimization design/
cupper foam/
response surface modeling/
hydrogen peroxide
Abstract:Foam-metal used as cathode in electro-Fenton (EF) has attracted attention recently due to it three-dimensional structure and good conductivity. In this study, copper-foam and graphite rod were used as cathode and anode, respectively. Moreover, micro-porous aeration glass reactor was designed, aiming for improving the low oxygen mass transfer rate in the EF configuration. The mechanism involved electro-generated active oxygen species (H2O2 and ·OH) was investigated by response surface modeling method. The effect of the different parameters affecting the performance of active oxygen species generation was investigated, including pH, current density and initial ferrous concentration. Response surface modeling method, more specifically, Box-Behnken design (BBD) was used to optimize the above-mentioned parameters for active oxygen species generation and then to put forward polynomial models between these parameters and active oxygen species. Results show that significant polynomial models were obtained (R2H2O2=0.977 8,R2·OH=0.964 2) and optimal conditions was obtained from BBD were shown as follows:pH=2, ferrous concentration=15 μmol·L-1 and current=0.25 A for H2O2 generation, while pH=2, ferrous concentration=20 μmol·L-1 and current=0.25 A for hydroxyl radicals generation. The copper concentration released from copper-foam cathode ranged from 0.4 to 1.8 mg·L-1, lowering than the standard concentration (CJ 343-2010).