操沛沛1,
程维明2,
洪亚军1,
毛祥3,
姚巧凤1
1.安徽工程大学生物与化学工程学院,芜湖 241000
2.芜湖奇瑞汽车有限公司,芜湖 241009
3.安徽欧鑫环保科技有限公司,合肥 230088
基金项目: 国家自然科学基金资助项目(51408001)
芜湖市科技计划项目(2016hm11)
国家级大学生创新创业训练计划项目(201510363083)
2016年度安徽工程大学研究生实践与创新项目(校研字[2016]28号)
Fenton oxidation combined with constructed wetland for heavy metals treatment of sludge
XU Dayong1,,CAO Peipei1,
CHENG Weiming2,
HONG Yajun1,
MAO Xiang3,
YAO Qiaofeng1
1.School of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, China
2.Chery Automobile Co.Ltd., Wuhu 241009, China
3.Anhui Ocean Green Technology Co.Ltd., Hefei 230088, China
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:针对单独应用Fenton氧化技术处理污泥的不足以及人工湿地在处理污水污泥方面的优势,以污水处理厂污泥浓缩池中含重金属污泥为对象,研究其依次经过Fenton氧化和人工湿地处理后重金属的去除效果及形态变化,以及污泥pH、TN和TP的变化情况。结果表明,Fenton氧化提高了污泥重金属的生物有效性,并促进了人工湿地对重金属的去除。Fenton氧化污泥经人工湿地处理后,Cu、Zn、Ni和Mn的去除率分别为67.2%、79.7%、37.0%和17.0%,与对照相比重金属的平均去除率提高了27.5%。经人工湿地处理后Fenton氧化污泥和原污泥重金属的生物有效性均降低。Fenton氧化污泥pH为4.4~4.6,经人工湿地处理后为6.2~7.1。人工湿地对Fenton氧化污泥和原污泥中TN的影响较小,而对TP表现出较高的去除率,2系统TP的去除率分别为51.1%和45.5%。
关键词: 芬顿氧化/
人工湿地/
剩余污泥/
重金属/
形态分析
Abstract:In view of the drawbacks of Fenton oxidation in sludge treatment and the advantages of constructed wetlands in wastewater and sludge treatment, a new process of Fenton oxidation combined with constructed wetland for heavy metal treatment of sludge was used in the present study. The removal effect and the speciation distribution of heavy metals, and the pH, TN and TP changes of the sludge were investigated. The original sludge was taking from a thickener of a wastewater treatment plant. The results indicated that the Fenton oxidation process enhanced the bioavailability of heavy metals, and promoted the removal rates of heavy metals in constructed wetlands at the same time. The removal rates of Cu, Zn, Ni and Mn were 67.2%, 79.7%, 37.0% and 17.0%, respectively. The average removal rate was increased by 27.5% compared with the control treatment. The bioavailability of heavy metals of Fenton oxidized sludge and original sludge was simultaneously reduced after constructed wetland treatment. Before and after the constructed wetland treatment, the pH of the Fenton oxidized sludge was 4.4 to 4.6 and 6.2 to 7.1, respectively. The effect of constructed wetland on TN removal rate of the Fenton oxidized sludge and original sewage sludge was small, but the opposite tendency was observed with the TP, while TP removal rate was 51.1% and 45.5% of the Fenton oxidized sludge and original sewage sludge, respectively. This study provides a new method and idea for the sludge treatment and resource.
Key words:Fenton oxidation/
constructed wetland/
excess sludge/
heavy metals/
speciation analysis.
[1] | 徐大勇, 操沛沛, 乐王旭, 等.Fenton氧化剩余污泥过程重金属迁移及其形态变化[J].环境工程学报,2016,0(10):5893-5900 |
[2] | 接伟光, 彭轶, 彭永臻, 等.pH值对剩余污泥中氮、磷溶出及菌群组成的影响[J].中国给水排水,2014,0(17):22-25 |
[3] | WU Q, GAO Q D, YAN R C, et al.Removal of heavy metal species from industrial sludge with the aid of biodegradable iminodisuccinic acid as the chelating ligand[J].Environmental Science & Pollution Research International,2015,2(2):1144-1150 |
[4] | 马学文, 翁焕新, 章金骏.中国城市污泥重金属和养分的区域特性及变化[J].中国环境科学,2011,1(8):1306-1313 |
[5] | 林恒, 张晖.电-Fenton及类电-Fenton技术处理水中有机污染物[J].化学进展,2015,7(8):1123-1132 |
[6] | 潘胜, 黄光团, 谭学军,等.Fenton试剂对剩余污泥脱水性能的改善[J].净水技术,2012,1(3):26-31 |
[7] | 洪晨, 邢奕, 司艳晓, 等.芬顿试剂氧化对污泥脱水性能的影响[J].环境科学研究,2014,7(6):615-622 |
[8] | ANDREWS J P, ASAADI M, CLARKE M, et al.Potentially toxic element release by Fenton oxidation of sewage sludge[J].Water Science & Technology,2006,4(5):197-205 |
[9] | 揭诗琪, 邵继莹, 吴雨桐,等.生物淋滤结合类芬顿反应去除底泥中重金属[J].有色金属科学与工程,2016,7(1):108-113 |
[10] | 周丽.人工湿地污水处理技术研究和应用现状[J].工业用水与废水,2016,7(5):8-12 |
[11] | 王志国, 蓝梅.人工湿地系统污水净化机理及其影响因素研究[J].人民珠江,2016,7(5):90-92 |
[12] | 石一民, 叶继红, 王波, 等.人工湿地对海水淡化厂污泥中重金属和COD去除效果的初步研究[J].浙江海洋学院学报(自然科学版), 2014,3(2):190-193 |
[13] | 黄光明, 周康民, 汤志云, 等.土壤和沉积物中重金属形态分析[J].土壤,2009,1(2):201-205 |
[14] | 张芳, 塔西甫拉提·特依拜, 梁辰,等.天山北麓苏打盐碱化土壤pH值测定中的影响因素分析[J].新疆农业科学, 2016(12):2328-2338 |
[15] | CHEN M, LI X M, YANG Q, et al.Total concentrations and speciation of heavy metals in municipal sludge from Changsha, Zhuzhou and Xiangtan in middle-south region of China[J].Journal of Hazardous Materials,2008,0(2/3):324-329 |
[16] | 张朝阳, 彭平安, 刘承帅,等.华南电子垃圾回收区农田土壤重金属污染及其化学形态分布[J].生态环境学报,2012,1(10):1742-1748 |
[17] | ZHU Y, ZENG G, ZHANG P, et al.Feasibility of bio-leaching combined with Fenton-like reaction to remove heavy metals from sewage sludge[J].Bioresource Technology,2013,2(4):530-534 |
[18] | 赵胜男, 李畅游, 史小红, 等.乌梁素海沉积物重金属生物活性及环境污染评估[J].生态环境学报, 2013,2(3):481-489 |
[19] | NICOMRAT D, DICK W A, DOPSON M, et al.Bacterial phylogenetic diversity in a constructed wetland system treating acid coal mine drainage[J].Soil Biology & Biochemistry,2008,0(2):312-321 |
[20] | 易乃康, 彭开铭, 陆丽君,等.人工湿地植物对脱氮微生物活性的影响机制研究进展[J].水处理技术, 2016,2(4):12-16 |
[21] | KIM B, GAUTIER M, SIMIDOFF A, et al.pH and Eh effects on phosphorus fate in constructed wetland’s sludge surface deposit[J].Journal of Environmental Management,2016,3:175-181 |
[22] | 张欢欢, 黄玉明.潜流人工湿地污水处理系统长期运行中pH及酸度和碱度的变化[J].西南大学学报(自然科学版),2012,4(5):69-73 |
[23] | 李娟, 张盼月, 曾光明, 等.Fenton氧化破解剩余污泥中的胞外聚合物[J].环境科学,2009,0(2):475-479 |
[24] | 苟剑锋, 高冬香, 曾正中,等.污泥施入黄土后重金属Cu、Zn、Cd的淋滤迁移[J].环境工程学报,2015,9(6):3002-3008 |
[25] | 林小英, 温仁贵.城市污泥中重金属形态分析及去除方法探讨[J].长春工程学院学报(自然科学版),2010,1(2):47-49 |
[26] | BEZINOV T, VYMAZAL J.Evaluation of heavy metals seasonal accumulation in Phalaris arundinacea, in a constructed treatment wetland[J].Ecological Engineering,2015,9(3):94-99 |
[27] | SONG X, YAN D, LIU Z, et al.Performance of laboratory-scale constructed wetlands coupled with micro-electric field for heavy metal-contaminating wastewater treatment[J].Ecological Engineering,2011,7(12):2061-2065 |
[28] | VYMAZAL J, BEZINOV T.Accumulation of heavy metals in above ground biomass of Phragmites australis, in horizontal flow constructed wetlands for wastewater treatment: A review[J].Chemical Engineering Journal,2016,0:232-242 |
Turn off MathJax -->
点击查看大图
计量
文章访问数:743
HTML全文浏览数:425
PDF下载数:245
施引文献:0
出版历程
刊出日期:2018-01-14
-->
Fenton氧化联合人工湿地处理污泥中的重金属
徐大勇1,,操沛沛1,
程维明2,
洪亚军1,
毛祥3,
姚巧凤1
1.安徽工程大学生物与化学工程学院,芜湖 241000
2.芜湖奇瑞汽车有限公司,芜湖 241009
3.安徽欧鑫环保科技有限公司,合肥 230088
基金项目: 国家自然科学基金资助项目(51408001) 芜湖市科技计划项目(2016hm11) 国家级大学生创新创业训练计划项目(201510363083) 2016年度安徽工程大学研究生实践与创新项目(校研字[2016]28号)
关键词: 芬顿氧化/
人工湿地/
剩余污泥/
重金属/
形态分析
摘要:针对单独应用Fenton氧化技术处理污泥的不足以及人工湿地在处理污水污泥方面的优势,以污水处理厂污泥浓缩池中含重金属污泥为对象,研究其依次经过Fenton氧化和人工湿地处理后重金属的去除效果及形态变化,以及污泥pH、TN和TP的变化情况。结果表明,Fenton氧化提高了污泥重金属的生物有效性,并促进了人工湿地对重金属的去除。Fenton氧化污泥经人工湿地处理后,Cu、Zn、Ni和Mn的去除率分别为67.2%、79.7%、37.0%和17.0%,与对照相比重金属的平均去除率提高了27.5%。经人工湿地处理后Fenton氧化污泥和原污泥重金属的生物有效性均降低。Fenton氧化污泥pH为4.4~4.6,经人工湿地处理后为6.2~7.1。人工湿地对Fenton氧化污泥和原污泥中TN的影响较小,而对TP表现出较高的去除率,2系统TP的去除率分别为51.1%和45.5%。
English Abstract
Fenton oxidation combined with constructed wetland for heavy metals treatment of sludge
XU Dayong1,,CAO Peipei1,
CHENG Weiming2,
HONG Yajun1,
MAO Xiang3,
YAO Qiaofeng1
1.School of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, China
2.Chery Automobile Co.Ltd., Wuhu 241009, China
3.Anhui Ocean Green Technology Co.Ltd., Hefei 230088, China
Keywords: Fenton oxidation/
constructed wetland/
excess sludge/
heavy metals/
speciation analysis
Abstract:In view of the drawbacks of Fenton oxidation in sludge treatment and the advantages of constructed wetlands in wastewater and sludge treatment, a new process of Fenton oxidation combined with constructed wetland for heavy metal treatment of sludge was used in the present study. The removal effect and the speciation distribution of heavy metals, and the pH, TN and TP changes of the sludge were investigated. The original sludge was taking from a thickener of a wastewater treatment plant. The results indicated that the Fenton oxidation process enhanced the bioavailability of heavy metals, and promoted the removal rates of heavy metals in constructed wetlands at the same time. The removal rates of Cu, Zn, Ni and Mn were 67.2%, 79.7%, 37.0% and 17.0%, respectively. The average removal rate was increased by 27.5% compared with the control treatment. The bioavailability of heavy metals of Fenton oxidized sludge and original sludge was simultaneously reduced after constructed wetland treatment. Before and after the constructed wetland treatment, the pH of the Fenton oxidized sludge was 4.4 to 4.6 and 6.2 to 7.1, respectively. The effect of constructed wetland on TN removal rate of the Fenton oxidized sludge and original sewage sludge was small, but the opposite tendency was observed with the TP, while TP removal rate was 51.1% and 45.5% of the Fenton oxidized sludge and original sewage sludge, respectively. This study provides a new method and idea for the sludge treatment and resource.